LEVI CLASSES OF QUASIVARIETIES OF NILPOTENT GROUPS OF EXPONENT ps

被引:3
作者
Lodeishchikova, V. V. [1 ]
Shakhova, S. A. [2 ]
机构
[1] Altai State Tech Univ, Barnaul, Russia
[2] Altai State Univ, Barnaul, Russia
关键词
quasivariety; Levi class; nilpotent group;
D O I
10.1007/s10469-022-09674-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Levi class L(M) generated by the class M of groups is the class of all groups in which the normal closure of every element belongs to M. It is proved that there exists a set of quasivarieties M of cardinality continuum such that L(M) = L(qH(ps)), where qH(ps) is the quasivariety generated by the group H-ps a free group of rank 2 in the variety R-Ps of <= 2-step nilpotent groups of exponent p(s) with commutator subgroup of exponent p, p is a prime number, p not equal 2, s is a natural number, s >= 2, and s > 2 for p = 3.
引用
收藏
页码:54 / 66
页数:13
相关论文
共 50 条
[41]   GROUPS WITH NILPOTENT n-GENERATED NORMAL SUBGROUPS [J].
Budkin, A. I. .
SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (04) :847-853
[42]   On Dominions of the Rationals in Nilpotent Groups [J].
Budkin, A. I. .
SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (04) :598-609
[43]   Lattices of dominions in quasivarieties of Abelian groups [J].
Shakhova S.A. .
Algebra and Logic, 2005, 44 (2) :132-139
[44]   ON THE INDEPENDENCY OF THE QUASIVARIETY OF NILPOTENT GROUPS [J].
Budkin, Alexandr Ivanovich .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 :516-522
[45]   On Dominions of the Rationals in Nilpotent Groups [J].
A. I. Budkin .
Siberian Mathematical Journal, 2018, 59 :598-609
[46]   On finitely based groups and nonfinitely based quasivarieties [J].
Lawrence, J ;
Willard, R .
JOURNAL OF ALGEBRA, 1998, 203 (01) :1-11
[47]   Nilpotent groups are round [J].
Daniel Berend ;
Michael D. Boshernitzan .
Israel Journal of Mathematics, 2008, 167 :49-61
[48]   On constructive nilpotent groups [J].
N. G. Khisamiev .
Siberian Mathematical Journal, 2007, 48 :172-179
[49]   Finite Nilpotent Groups Having Exactly Four Conjugacy Classes of Non-normal Subgroups [J].
Gong, Lu ;
Cao, Hongping ;
Chen, Guiyun .
ALGEBRA COLLOQUIUM, 2013, 20 (04) :579-592
[50]   Semivarieties of nilpotent groups [J].
A. I. Budkin .
Algebra and Logic, 2010, 49 :389-399