Spin density in partially coherent surface-plasmon-polariton vortex fields

被引:8
|
作者
Chen, Yahong [1 ,2 ]
Norrman, Andreas [3 ,4 ]
Ponomarenko, Sergey A. [5 ,6 ]
Friberg, Ari T. [4 ]
机构
[1] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China
[3] Swiss Fed Inst Technol, Photon Lab, CH-8093 Zurich, Switzerland
[4] Univ Eastern Finland, Inst Photon, POB 111, FI-80101 Joensuu, Finland
[5] Dalhousie Univ, Dept Elect & Comp Engn, Halifax, NS B3J 2X4, Canada
[6] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
基金
中国国家自然科学基金; 芬兰科学院; 加拿大自然科学与工程研究理事会;
关键词
OPTICAL COHERENCE;
D O I
10.1103/PhysRevA.103.063511
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Y We examine the spin angular momentum (SAM) density associated with the recently introduced [Phys. Rev. A 100, 053833 (2019)], partially coherent surface-plasmon-polariton (SPP) vortex fields at a metal-air interface. We show that the vortices appearing in such structured SPP fields induce a SAM density both in the interface plane and in the direction normal to the interface. We find that the radial and azimuthal SAM densities are caused solely by the SPP electric-field correlations. However, besides the intrinsic spin component induced by the complex SPP wave vector, the azimuthal SAM density remarkably carries also a spin component created by the elementary SPPs comprising the partially coherent vortex field. The normal SAM density, on the other hand, arises mainly due to the SPP magnetic-field correlations. Our analysis specifically demonstrates that the state of coherence of the partially coherent SPP vortex field plays an essential role in shaping the SAM density distributions. Our findings can find applications to near-field particle manipulation and in spin-based integrated photonic circuit design.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Information carried by a surface-plasmon-polariton wave across a gap
    Agrahari, Rajan
    Lakhtakia, Akhlesh
    Jain, Pradip K.
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (05)
  • [22] Ultralow-bending-loss surface-plasmon-polariton waveguides
    Ji, Jianhua
    Huang, Qian
    Chen, Xuemei
    Sun, Lu
    Wang, Ke
    Xu, Ming
    Jiang, Chun
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (06)
  • [23] Information carried by a surface-plasmon-polariton wave across a gap
    1600, American Institute of Physics Inc. (124):
  • [24] Simultaneous existence of amplified and attenuated surface-plasmon-polariton waves
    Mackay T.G.
    Lakhtakia A.
    Journal of Optics, 2018, 47 (4) : 527 - 533
  • [25] Characterization of long-range surface-plasmon-polariton waveguides
    Berini, P
    Charbonneau, R
    Lahoud, N
    Mattiussi, G
    JOURNAL OF APPLIED PHYSICS, 2005, 98 (04)
  • [26] Ultralow-bending-loss surface-plasmon-polariton waveguides
    Jianhua Ji
    Qian Huang
    Xuemei Chen
    Lu Sun
    Ke Wang
    Ming Xu
    Chun Jiang
    Optical and Quantum Electronics, 2018, 50
  • [27] On Surface-Plasmon-Polariton Waves Excited in the Turbadar–Otto Configuration
    Tom G. Mackay
    Muhammad Faryad
    Plasmonics, 2022, 17 : 753 - 755
  • [28] EFFECT OF A CHARGE LAYER ON SURFACE-PLASMON-POLARITON DISPERSION CURVE
    CUNNINGHAM, SL
    MARADUDIN, AA
    WALLIS, RF
    PHYSICAL REVIEW B, 1974, 10 (08) : 3342 - 3355
  • [29] Efficiency of surface-plasmon-polariton focusing by curved chains of nanoparticles
    EvIyukhin, A. B.
    Stepanov, A. L.
    Kiyan, R.
    Chichkov, B. N.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2008, 25 (06) : 1011 - 1015
  • [30] Graded index surface-plasmon-polariton devices for subwavelength light management
    Della Valle, G.
    Longhi, S.
    PHYSICAL REVIEW B, 2010, 82 (15):