Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment

被引:324
作者
Zhu, Zhi [1 ,2 ]
Yu, Daiwei [3 ]
Yang, Yang [1 ,2 ]
Su, Cong [1 ,2 ]
Huang, Yimeng [1 ,2 ]
Dong, Yanhao [1 ,2 ]
Waluyo, Iradwikanari [4 ]
Wang, Baoming [5 ]
Hunt, Adrian [4 ]
Yao, Xiahui [1 ,2 ]
Lee, Jinhyuk [1 ,2 ]
Xue, Weijiang [1 ,2 ]
Li, Ju [1 ,2 ]
机构
[1] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[5] MIT, Mat Res Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
HIGH-ENERGY; ION BATTERIES; HIGH-VOLTAGE; LITHIUM; EVOLUTION; DEGRADATION; ACTIVATION; ELECTRODES; MECHANISM; VACANCIES;
D O I
10.1038/s41560-019-0508-x
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-rich transition metal oxide (Li1+xM1-xO2) cathodes have high energy density above 900 Wh kg(-1) due to hybrid anion- and cation-redox (HACR) contributions, but critical issues such as oxygen release and voltage decay during cycling have prevented their application for years. Here we show that a molten molybdate-assisted LiO extraction at 700 degrees C creates lattice-coherent but depth (r)-dependent Li1+x(r)M1-x(r)O2 particles with a Li-rich (X approximate to 0.2) interior, a Li-poor (X approximate to -0.05) surface and a continuous gradient in between. The gradient Li-rich single crystals eliminate the oxygen release to the electrolyte and, importantly, still allow stable oxygen redox contributions within. Both the metal valence states and the crystal structure are well maintained during cycling. The gradient HACR cathode displays a specific density of 843 Wh kg(-1) after 200 cycles at 0.2C and 808 Wh kg(-1) after 100 cycles at 1C, with very little oxygen release and consumption of electrolyte. This high-temperature immunization treatment can be generalized to leach other elements to avoid unexpected surface reactions in batteries.
引用
收藏
页码:1049 / 1058
页数:10
相关论文
共 46 条
[1]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[2]   Lithium Extraction Mechanism in Li-Rich Li2MnO3 Involving Oxygen Hole Formation and Dimerization [J].
Chen, Hungru ;
Islam, M. Saiful .
CHEMISTRY OF MATERIALS, 2016, 28 (18) :6656-6663
[3]   A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer [J].
Cho, Yonghyun ;
Oh, Pilgun ;
Cho, Jaephil .
NANO LETTERS, 2013, 13 (03) :1145-1152
[4]   High Reversibility of Lattice Oxygen Redox Quantified by Direct Bulk Probes of Both Anionic and Cationic Redox Reactions [J].
Dai, Kehua ;
Wu, Jinpeng ;
Zhuo, Zengqing ;
Li, Qinghao ;
Sallis, Shawn ;
Mao, Jing ;
Ai, Guo ;
Sun, Chihang ;
Li, Zaiyuan ;
Gent, William E. ;
Chueh, William C. ;
Chuang, Yi-de ;
Zeng, Rong ;
Shen, Zhi-xun ;
Pan, Feng ;
Yan, Shishen ;
Piper, Louis F. J. ;
Hussain, Zahid ;
Liu, Gao ;
Yang, Wanli .
JOULE, 2019, 3 (02) :518-541
[5]   Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries [J].
de Biasi, Lea ;
Schwarz, Bjoern ;
Brezesinski, Torsten ;
Hartmann, Pascal ;
Janek, Juergen ;
Ehrenberg, Helmut .
ADVANCED MATERIALS, 2019, 31 (26)
[6]   Reactions in the Rechargeable Lithium-O2 Battery with Alkyl Carbonate Electrolytes [J].
Freunberger, Stefan A. ;
Chen, Yuhui ;
Peng, Zhangquan ;
Griffin, John M. ;
Hardwick, Laurence J. ;
Barde, Fanny ;
Novak, Petr ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (20) :8040-8047
[7]   Surface coating of lithium-manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries [J].
Guo, Shaohua ;
Yu, Haijun ;
Liu, Pan ;
Liu, Xizheng ;
Li, De ;
Chen, Mingwei ;
Ishida, Masayoshi ;
Zhou, Haoshen .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (12) :4422-4428
[8]   Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes [J].
Hatsukade, Toru ;
Schiele, Alexander ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (45) :38892-38899
[9]   Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release [J].
Hu, Enyuan ;
Yu, Xiqian ;
Lin, Ruoqian ;
Bi, Xuanxuan ;
Lu, Jun ;
Bak, Seongmin ;
Nam, Kyung-Wan ;
Xin, Huolin L. ;
Jaye, Cherno ;
Fischer, Daniel A. ;
Amine, Kahlil ;
Yang, Xiao-Qing .
NATURE ENERGY, 2018, 3 (08) :690-698
[10]   Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0 ≤ x ≤ 0.5) [J].
Hy, Sunny ;
Felix, Felix ;
Rick, John ;
Su, Wei-Nien ;
Hwang, Bing Joe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (03) :999-1007