Emergence and evolution of yeast prion and prion-like proteins

被引:28
作者
An, Lu [1 ]
Fitzpatrick, David [2 ]
Harrison, Paul M. [1 ]
机构
[1] McGill Univ, Dept Biol, 1205 Doctor Penfield Ave, Montreal, PQ H3A 1B1, Canada
[2] NUI Maynooth, Bioinformat & Mol Evolut Unit, Maynooth, Kildare, Ireland
基金
加拿大自然科学与工程研究理事会;
关键词
Prion; Evolution; Bias; Composition; Bioinformatics; Disease; Mutation; Yeast; Fungi; SACCHAROMYCES-CEREVISIAE; COMPOSITIONAL BIAS; IDENTIFY PROTEINS; GENETIC-VARIATION; BUDDING YEAST; MUTATION-RATE; RICH DOMAINS; APLYSIA CPEB; URE3; PRION; PSI+;
D O I
10.1186/s12862-016-0594-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Prions are transmissible, propagating alternative states of proteins, and are usually made from the fibrillar, beta-sheet-rich assemblies termed amyloid. Prions in the budding yeast Saccharomyces cerevisiae propagate heritable phenotypes, uncover hidden genetic variation, function in large-scale gene regulation, and can act like diseases. Almost all these amyloid prions have asparagine/glutamine-rich (N/Q-rich) domains. Other proteins, that we term here 'prionogenic amyloid formers' (PAFs), have been shown to form amyloid in vivo, and to have N/Q-rich domains that can propagate heritable states in yeast cells. Also, there are >200 other S. cerevisiae proteins with prion-like N/Q-rich sequence composition. Furthermore, human proteins with such N/Q-rich composition have been linked to the pathomechanisms of neurodegenerative amyloid diseases. Results: Here, we exploit the increasing abundance of complete fungal genomes to examine the ancestry of prions/PAFs and other N/Q-rich proteins across the fungal kingdom. We find distinct evolutionary behavior for Q-rich and N-rich prions/PAFs; those of ancient ancestry (outside the budding yeasts, Saccharomycetes) are Q-rich, whereas N-rich cases arose early in Saccharomycetes evolution. This emergence of N-rich prion/PAFs is linked to a large-scale emergence of N-rich proteins during Saccharomycetes evolution, with Saccharomycetes showing a distinctive trend for population sizes of prion-like proteins that sets them apart from all the other fungi. Conversely, some clades, e.g. Eurotiales, have much fewer N/Q-rich proteins, and in some cases likely lose them en masse, perhaps due to greater amyloid intolerance, although they contain relatively more non-N/Q-rich predicted prions. We find that recent mutational tendencies arising during Saccharomycetes evolution (i.e., increased numbers of N residues and a tendency to form more poly-N tracts), contributed to the expansion/development of the prion phenomenon. Variation in these mutational tendencies in Saccharomycetes is correlated with the population sizes of prion-like proteins, thus implying that selection pressures on N/Q-rich protein sequences against amyloidogenesis are not generally maintained in budding yeasts. Conclusions: These results help to delineate further the limits and origins of N/Q-rich prions, and provide insight as a case study of the evolution of compositionally-defined protein domains.
引用
收藏
页数:13
相关论文
共 71 条
[1]   Amyloid-like interactions within nucleoporin FG hydrogels [J].
Ader, Christian ;
Frey, Steffen ;
Maas, Werner ;
Schmidt, Hermann Broder ;
Goerlich, Dirk ;
Baldus, Marc .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (14) :6281-6285
[2]   A Systematic Survey Identifies Prions and Illuminates Sequence Features of Prionogenic Proteins [J].
Alberti, Simon ;
Halfmann, Randal ;
King, Oliver ;
Kapila, Atul ;
Lindquist, Susan .
CELL, 2009, 137 (01) :146-158
[3]   Could yeast prion domains originate from polyQ/N tracts? [J].
Alexandrov, Alexander I. ;
Ter-Avanesyan, Michael D. .
PRION, 2013, 7 (03) :209-214
[4]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[5]   A CYTOPLASMIC SUPPRESSOR OF SUPER-SUPPRESSOR IN YEAST [J].
COX, BS .
HEREDITY, 1965, 20 :505-+
[6]   A Small, Glutamine-Free Domain Propagates the [SWI+] Prion in Budding Yeast [J].
Crow, Emily T. ;
Du, Zhiqiang ;
Li, Liming .
MOLECULAR AND CELLULAR BIOLOGY, 2011, 31 (16) :3436-3444
[7]   Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae [J].
Decker, Carolyn J. ;
Teixeira, Daniela ;
Parker, Roy .
JOURNAL OF CELL BIOLOGY, 2007, 179 (03) :437-449
[8]   Prions affect the appearance of other prions:: The story of [PIN+] [J].
Derkatch, IL ;
Bradley, ME ;
Hong, JY ;
Liebman, SW .
CELL, 2001, 106 (02) :171-182
[9]   IUPred:: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content [J].
Dosztányi, Z ;
Csizmok, V ;
Tompa, P ;
Simon, I .
BIOINFORMATICS, 2005, 21 (16) :3433-3434
[10]   Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae [J].
Du, Zhiqiang ;
Park, Kyung-Won ;
Yu, Haijing ;
Fan, Qing ;
Li, Liming .
NATURE GENETICS, 2008, 40 (04) :460-465