Regularization of the WKB integrals

被引:10
作者
Dobrovolsky, GA [1 ]
Tutik, RS [1 ]
机构
[1] Dnepropetrovsk State Univ, Dept Phys, UA-49050 Dnepropetrovsk, Ukraine
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 37期
关键词
D O I
10.1088/0305-4470/33/37/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simple general method of regularization of the higher-order Wentzel-Kramers-Brillouin (WKB) integrals for the bound state problem of the one-dimensional Schrodinger equation with a real-analytic potential is proposed. The method is based upon the explicit separation of the integrand singularities. As an example, a contribution of the higher-order WKB corrections to the energy eigenvalues for the quasi-exactly solvable potential, V (x) = 10x(2) +10x(4) +x(6), is considered.
引用
收藏
页码:6593 / 6599
页数:7
相关论文
共 40 条
[1]   EXACT-SOLUTIONS FOR POLYNOMIAL POTENTIALS USING SUPERSYMMETRY INSPIRED FACTORIZATION METHOD [J].
ADHIKARI, R ;
DUTT, R ;
VARSHNI, YP .
PHYSICS LETTERS A, 1989, 141 (1-2) :1-8
[2]   HIGHER-ORDER WKB APPROXIMATIONS IN SUPERSYMMETRIC QUANTUM-MECHANICS [J].
ADHIKARI, R ;
DUTT, R ;
KHARE, A ;
SUKHATME, UP .
PHYSICAL REVIEW A, 1988, 38 (04) :1679-1686
[3]  
Babenko K. I., 1986, BASICS NUMERICAL ANA
[4]   EVALUATION OF HIGH-ORDER JWKB PHASE INTEGRALS [J].
BARWELL, MG ;
LEROY, RJ ;
PAJUNEN, P ;
CHILD, MS .
JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (06) :2618-2623
[5]   ON USE OF WBK METHOD FOR OBTAINING ENERGY EIGENVALUES [J].
BECKEL, CL ;
NAKHLEH, J ;
CHOWDARY, YR .
JOURNAL OF CHEMICAL PHYSICS, 1964, 40 (01) :139-&
[6]   NUMEROLOGICAL ANALYSIS OF WKB APPROXIMATION IN LARGE ORDER [J].
BENDER, CM ;
OLAUSSEN, K ;
WANG, PS .
PHYSICAL REVIEW D, 1977, 16 (06) :1740-1748
[7]  
Brillouin L, 1926, CR HEBD ACAD SCI, V183, P24
[8]   MODIFICATION OF THE JWKB APPROXIMATION FOR FINDING BOUND-STATE ENERGIES [J].
BRUEV, AS .
PHYSICS LETTERS A, 1992, 161 (05) :407-410
[9]   WKB WAVE-FUNCTIONS WITHOUT MATCHING [J].
CASAS, M ;
PLASTINO, A ;
PUENTE, A ;
CANOSA, N ;
ROSSIGNOLI, R .
PHYSICAL REVIEW A, 1993, 47 (05) :3530-3537
[10]   EIGENVALUES OF ANHARMONIC-OSCILLATORS AND THE PERTURBED COULOMB PROBLEM IN N-DIMENSIONAL SPACE [J].
CHAUDHURI, RN ;
MONDAL, M .
PHYSICAL REVIEW A, 1995, 52 (03) :1850-1856