Importance sampling Kalman filter for image estimation

被引:9
作者
Subrahmanyam, G. R. K. S. [1 ]
Rajagopalan, A. N. [1 ]
Aravind, R. [1 ]
机构
[1] Indian Inst Technol, Image Proc & Comp Vis Lab, Dept Elect Engn, Madras 600036, Tamil Nadu, India
关键词
discontinuity adaptive prior; image estimation; importance sampling; Kalman filter; Markov random fields; non-Gaussian image modelling; state space models;
D O I
10.1109/LSP.2006.891345
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents discontinuity adaptive image estimation within the Kalman filter framework by non-Gaussian modeling of the image prior. A generalized methodology is proposed for specifying state-dynamics using the conditional density of the state given its neighbors, without explicitly defining the state equation. The novelty of our approach lies in directly obtaining the predicted mean and variance of the non-Gaussian state conditional density by importance sampling and incorporating them in the update step of the Kalman filter. Experimental results are given to demonstrate the effectiveness of the proposed method in preserving edges.
引用
收藏
页码:453 / 456
页数:4
相关论文
共 15 条
[1]   IMAGE-RESTORATION USING REDUCED ORDER MODELS [J].
ANGWIN, DL ;
KAUFMAN, H .
SIGNAL PROCESSING, 1989, 16 (01) :21-28
[2]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[3]   Bayesian estimation for homogeneous and inhomogeneous Gaussian random fields [J].
Aykroyd, RG .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (05) :533-539
[4]  
CECCARELLI M, 2005, P ICIAP 2005, P277
[5]   Image restoration using recursive Markov random field models driven by cauchy distributed noise [J].
Chang, YC ;
Kadaba, SR ;
Doerschuk, PC ;
Gelfand, SB .
IEEE SIGNAL PROCESSING LETTERS, 2001, 8 (03) :65-66
[6]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[7]  
JAIN AK, 1989, FUNDAMENTALS FIELD M
[8]   COMPOUND GAUSS-MARKOV RANDOM-FIELDS FOR IMAGE ESTIMATION [J].
JENG, FC ;
WOODS, JW .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (03) :683-697
[9]   INHOMOGENEOUS GAUSSIAN IMAGE-MODELS FOR ESTIMATION AND RESTORATION [J].
JENG, FC ;
WOODS, JW .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (08) :1305-1312
[10]   Recursive estimation of images using non-gaussian autoregressive models [J].
Kadaba, SR ;
Gelfand, SB ;
Kashyap, RL .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (10) :1439-1452