CFD modelling of two-phase gas-liquid annular flow in terms of void fraction for vertical down- and up-ward flow

被引:7
|
作者
Pinilla, A. [1 ]
Guerrero, E. [1 ,2 ]
Henao, D. H. [1 ]
Reyes, D., V [1 ]
Pereyra, E. [4 ]
Soto, G. [3 ]
Ratkovich, Nicolas [1 ]
机构
[1] Univ los Andes, Dept Chem Engn, Bogota 111711, Colombia
[2] Univ Tulsa, Russell Sch Chem Engn, Tulsa, OK 74104 USA
[3] Autonomous Metropolitan Univ, Div Basic Sci & Engn, Campus Lerma, Lerma De Villada 52005, Edo De Mexico, Mexico
[4] Univ Tulsa, McDougall Sch Petr Engn, Tulsa, OK 74104 USA
来源
SN APPLIED SCIENCES | 2019年 / 1卷 / 11期
关键词
Air-oil flow; Annular flow; CFD; Void fraction; OLGA; DRIFT-FLUX MODEL; SLUG FLOW; HOLDUP; PREDICTION; ENTRAINMENT; TRANSITION; PATTERNS; VAPOR; AIR;
D O I
10.1007/s42452-019-1430-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two-phase flows are present in all the value chain of the oil industry, being of significant interest in pipeline transportation. They are essential for the calculation of production rates or separation process design; therefore, multiphase flows have been studied for several years, and numerous models, data banks and computational software have been developed to design more efficient processes. For this reason, the purpose of this study is to develop a CFD numerical model capable of predicting air-oil and air-water annular flow for up- and down-ward flows in vertical pipes with the objective of present a methodology to develop a reliable numerical model and present CFD tools as an alternative to the empirical models, or other commercial computational codes such as the dynamic multiphase flow simulators, for the study of multiphase flow. To achieve this objective, 36 simulations using CFD were compared against 150 simulations using OLGA and 66 different empirical correlations to predict void fraction and compare the obtained results against experimental data. Different liquid viscosities (0.00089, 0.127, 0.213, 0.408 and 0.586 Pa s) and three different pipelines were used: a 22.72 m long and 0.0508 m ID pipe, a 15.24 m long and 0.0508 m ID pipe, and a 15.24 m long and 0.1016 m ID pipe. The obtained results showed that the CFD model accurately predicts the void fraction for both down- and up-ward cases, while the obtained results using OLGA and the empirical correlations showed a lower accuracy.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] On intermittent flow characteristics of gas-liquid two-phase flow
    Thaker, Jignesh
    Banerjee, Jyotirmay
    NUCLEAR ENGINEERING AND DESIGN, 2016, 310 : 363 - 377
  • [22] Void fraction and flow patterns of gas liquid two-phase flow in a microchannel
    Department of Mechanical Engineering, Kagoshima University, 1-21-40 Koorimoto, Kagoshima-shi, Kagoshima, 890-0065, Japan
    Nihon Kikai Gakkai Ronbunshu, B, 2008, 6 (1239-1246): : 1239 - 1246
  • [23] Void fraction prediction in annular two-phase flow
    Cioncolini, Andrea
    Thome, John R.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2012, 43 : 72 - 84
  • [24] Disturbance wave development in two-phase gas-liquid upwards vertical annular flow
    Zhao, Yujie
    Markides, Christos N.
    Matar, Omar K.
    Hewitt, Geoffrey F.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2013, 55 : 111 - 129
  • [25] Investigation on void fraction of gas-liquid two-phase flow in horizontal pipe under fluctuating vibration
    Zhou, Yunlong
    Ran, Yiwen
    Liu, Qichao
    Zhang, Shibo
    NUCLEAR ENGINEERING AND DESIGN, 2025, 431
  • [26] Visualization and void fraction measurement of gas-liquid two-phase flow in plate heat exchanger
    Asano, H
    Takenaka, N
    Fujii, T
    Maeda, N
    APPLIED RADIATION AND ISOTOPES, 2004, 61 (04) : 707 - 713
  • [27] Quantitative measurement of void fraction distributions in gas-liquid two-phase flow by neutron radiography
    Takenaka, N
    Kawano, S
    Matsumoto, A
    ADVANCES IN NONDESTRUCTIVE EVALUATION, PT 1-3, 2004, 270-273 : 1356 - 1360
  • [28] A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels
    Li, Huajun
    Ji, Haifeng
    Huang, Zhiyao
    Wang, Baoliang
    Li, Haiqing
    Wu, Guohua
    SENSORS, 2016, 16 (02)
  • [29] Analysis of void fraction of Gas-liquid Two-phase Flow on the Hilbert-Huang Transform
    Sun, Bin
    Zheng, Yongjun
    Liu, Tiejun
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 4960 - 4963
  • [30] Statistical characteristics of two-phase gas-liquid flow in a vertical microchannel
    Kozulin, I. A.
    Kuznetsov, V. V.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2011, 52 (06) : 956 - 964