Analysis of the Relaxation Process Using Nonrelativistic Kinetic Equation

被引:2
|
作者
Takamoto, Makoto [1 ]
Inutsuxa, Shu-ichiro [2 ]
机构
[1] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
[2] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan
来源
PROGRESS OF THEORETICAL PHYSICS | 2010年 / 123卷 / 05期
关键词
GAS; PROPAGATION; SPHERE; SOUND;
D O I
10.1143/PTP.123.903
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the linearized kinetic equation of relaxation model proposed by Bhatnagar, Gross and Krook [P. L. Bhatnagar, E. P. Gross and M. Krook, Phys. Rev. 94 (1954), 511] (also called BGK model) and solve the dispersion relation. Using the solution of the dispersion relation, we analyze the relaxation of the macroscopic mode and kinetic mode. Since the BGK model is not based on the expansion in the mean free path in contrast to the Chapman-Enskog expansion, the solution can describe the accurate relaxation of initial disturbance with any wavelength. This nonrelativistic analysis gives suggestions for our next work on the relativistic analysis of relaxation.
引用
收藏
页码:903 / 920
页数:18
相关论文
共 50 条
  • [31] Quantum kinetic equation for spin relaxation and spin Hall effect in GaAs
    H. C. Lee
    C.-Y. Mou
    The European Physical Journal B, 2010, 73 : 229 - 242
  • [32] ATYPICAL CASE OF THE DIELECTRIC RELAXATION RESPONSES AND ITS FRACTIONAL KINETIC EQUATION
    Stanislavsky, Aleksander
    Weron, Karina
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (01) : 212 - 228
  • [33] Kinetic Over-Relaxation Method for the Convection Equation with Fourier Solver
    Helie, Romane
    Helluy, Philippe
    Franck, Emmanuel
    Navoret, Laurent
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 745 - 753
  • [34] Numerical analysis of coupling for a kinetic equation
    Tidriri, M
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (06): : 1121 - 1134
  • [35] An analysis of dielectric relaxation using the fractional master equation of the stochastic Ising model
    Cavus, M. Serdar
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (01) : 202 - 205
  • [36] Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime
    Weizhu Bao
    Xuanchun Dong
    Numerische Mathematik, 2012, 120 : 189 - 229
  • [37] Improving the kinetic couplings in lattice nonrelativistic QCD
    Davies, Christine T. H.
    Harrison, Judd
    Hughes, Ciaran
    Horgan, Ronald R.
    von Hippel, Georg M.
    Wingate, Matthew
    PHYSICAL REVIEW D, 2019, 99 (05)
  • [38] Formulation and numerical analysis of diatomic molecular dissociation using Boltzmann kinetic equation
    Yano, Ryosuke
    Suzuki, Kojiro
    Kuroda, Hisayasu
    PHYSICS OF FLUIDS, 2007, 19 (01)
  • [39] EFFECT OF INITIAL PAIR CORRELATIONS ON KINETIC-EQUATION DESCRIBING A2-DIMENSIONAL NONRELATIVISTIC CLASSICAL GAS
    PRASAD, M
    PHYSICS LETTERS A, 1978, 65 (01) : 8 - 10
  • [40] Energy equation for the analysis of magnetization relaxation to equilibrium
    Bertotti, G
    Bonin, R
    Magni, A
    Mayergoyz, ID
    Serpico, C
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 286 : 282 - 285