Upper and lower fast Khintchine spectra in continued fractions

被引:14
作者
Liao, Lingmin [1 ]
Rams, Micha [2 ]
机构
[1] Univ Paris Est Creteil, CNRS, LAMA UMR 8050, 61 Ave Gen Gaulle, F-94010 Creteil, France
[2] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
来源
MONATSHEFTE FUR MATHEMATIK | 2016年 / 180卷 / 01期
关键词
Continued fraction; Khintchine exponents; Multifractal spectrum; PARTIAL QUOTIENTS; EXPANSIONS; DIMENSION; SUMS; SETS;
D O I
10.1007/s00605-016-0879-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an irrational number x epsilon [0, 1), let x = [a(1)(x), a(2)(x),...] be its continued fraction expansion. Let psi : N -> N be a function with psi (n)/n -> infinity as n -> infinity. The (upper, lower) fast Khintchine spectrum for psi is defined as the Hausdorff dimension of the set of numbers x epsilon (0, 1) for which the (upper, lower) limit of 1/psi(n) Sigma(n)(j = 1) log a(j) (x) is equal to 1. The fast Khintchine spectrum was determined by Fan, Liao, Wang, and Wu. We calculate the upper and lower fast Khintchine spectra. These three spectra can be different.
引用
收藏
页码:65 / 81
页数:17
相关论文
共 15 条
  • [1] [Anonymous], MATH ANN
  • [2] Falconer K., 2014, Fractal geometry: mathematical foundations and applications
  • [3] Recurrence, dimension and entropy
    Fan, AH
    Feng, DJ
    Wu, J
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 : 229 - 244
  • [4] A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation
    Fan, Ai-Hua
    Schmeling, Jorg
    Troubetzkoy, Serge
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 1173 - 1219
  • [5] On Khintchine exponents and Lyapunov exponents of continued fractions
    Fan, Ai-Hua
    Liao, Ling-Min
    Wang, Bao-Wei
    Wu, Jun
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 73 - 109
  • [6] On the fast Khintchine spectrum in continued fractions
    Fan, Aihua
    Liao, Lingmin
    Wang, Baowei
    Wu, Jun
    [J]. MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 329 - 340
  • [7] INCREASING DIGIT SUBSYSTEMS OF INFINITE ITERATED FUNCTION SYSTEMS
    Jordan, Thomas
    Rams, Michal
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (04) : 1267 - 1279
  • [8] Khintchine A., 1935, COMPOS MATH, V1, P361
  • [9] Khintchine A.Ya., 1963, Continued Fractions
  • [10] Liao L., 2016, MATH P CAMB IN PRESS