APPROXIMATION BY SUBGROUPS OF FINITE INDEX AND THE HANNA NEUMANN CONJECTURE

被引:14
作者
Jaikin-Zapirain, Andrei [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
[2] UC3M, UCM, UAM, Inst Ciencias Matemat CSIC, Madrid, Spain
关键词
DIVISION RINGS; BETTI NUMBERS; L-2-INVARIANTS; ALGEBRAS;
D O I
10.1215/00127094-0000015X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a free group (pro- p group), and let U and W be two finitely generated subgroups (closed subgroups) of F. The Strengthened Hanna Neumann conjecture says that Sigma(x is an element of U\F/W) (rk) over bar (U boolean AND xWx(-1)) <= (rk) over bar (U)(rk) over bar (W), where (rk) over bar (U) = max{rk(U) - 1,0}. This conjecture was proved independently in the case of abstract groups by J. Friedman and I. Mineyev in 2011. In this paper we give the proof of the conjecture in the pro-p context, and we present a new proof in the abstract case. We also show that the Luck approximation conjecture holds for free groups.
引用
收藏
页码:1955 / 1987
页数:33
相关论文
共 36 条
[1]   THE MAXIMAL RING OF QUOTIENTS OF A FINITE VONNEUMANN ALGEBRA [J].
BERBERIAN, SK .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1982, 12 (01) :149-164
[2]   On the growth of Betti numbers in p-adic analytic towers [J].
Bergeron, Nicolas ;
Linnell, Peter ;
Lueck, Wolfgang ;
Sauer, Roman .
GROUPS GEOMETRY AND DYNAMICS, 2014, 8 (02) :311-329
[3]  
Brown K., 1982, Graduate Texts in Mathematics, V87, DOI DOI 10.1007/978-1-4684-9327-6
[4]   PSEUDOCOMPACT ALGEBRAS PROFINITE GROUPS AND CLASS FORMATIONS [J].
BRUMER, A .
JOURNAL OF ALGEBRA, 1966, 4 (03) :442-&
[5]  
Cohn P. M., 1974, B LOND MATH SOC, V6, P13
[6]  
Cohn P. M., 1964, J ALGEBRA, VI, P47, DOI 10.1016/0021-8693(64)90007-9
[7]  
COHN PM, 1995, ENCY MATH ITS APPL, V57
[8]   On a theorem of Ian!Hughes about division rings of fractions [J].
Dicks, W ;
Herbera, D ;
Sánchez, J .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (03) :1127-1149
[9]  
DICKS W., 1956, PREPRINT
[10]  
Dicks W., 1978, J. Pure Appl. Algebra, V13, P243