Ligand binding properties of the N-terminal domain of riboflavin synthase from Escherichia coli

被引:0
作者
Lee, Chan Yong [1 ]
Illarionov, Boris
Woo, Young-Eun
Kemter, Kristina
Kim, Ryu-Ryun
Eberhardt, Sabine
Cushman, Mark
Eisenreich, Wolfgang
Fischer, Markus
Bacher, Adelbert
机构
[1] Chungnam Natl Univ, Dept Biochem, Taejon 305764, South Korea
[2] Tech Univ Munich, Lehrstuhl Organ Chem & Biochem, D-85747 Garching, Germany
[3] Purdue Univ, Dept Med Chem & Mol Pharmacol, W Lafayette, IN 47907 USA
[4] Univ Hamburg, Lehrstuhl Lebensmittelchem, D-20146 Hamburg, Germany
来源
JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY | 2007年 / 40卷 / 02期
关键词
Escherichia coli; lumazine; riboflavin synthase; site-directed mutagenesis;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Riboflavin synthase from Escherichia coli is a homotrimer of 23.4 kDa subunits and catalyzes the formation of one molecule each of riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione by the transfer of a 4-carbon moiety between two molecules of the substrate, 6,7dimethyl-8-ribityllumazine. Each subunit comprises two closely similar folding domains. Recombinant expression of the N-terminal domain is known to provide a c(2)-symmetric homodimer. In this study, the binding properties of wild type as well as two mutated proteins of N-terminal domain of riboflavin synthase with various ligands were tested. The replacement of the amino acid residue A43, located in the second shell of riboflavin synthase active center, in the recombinant N-terminal domain dimer reduces the affinity for 6,7-dimethyl-8-ribityllumazine. The mutation of the amino acid residue C48 forming part of activity cavity of the enzyme causes significant F-19 NMR chemical shift modulation of trifluoromethyl derivatives of 6,7-dimethyl-8-ribityfumazine in complex with the protein, while substitution of A43 results in smaller chemical shift changes.
引用
收藏
页码:239 / 246
页数:8
相关论文
共 24 条
  • [1] Hydrogen-bond acceptor and donor properties of divalent sulfur (Y-S-Z and R-S-H)
    Allen, FH
    Bird, CM
    Rowland, RS
    Raithby, PR
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1997, 53 : 696 - 701
  • [2] BACHER A, 1986, METHOD ENZYMOL, V122, P192
  • [3] BACHER A, 1991, CHEM BIOCH FLAVOPROT, V1, P215
  • [4] BAHER A, 1996, ESCHERICHIA COLI SAL, P657
  • [5] SYNTHESIS OF EPIMERIC 6,7-BIS(TRIFLUOROMETHYL)-8-RIBITYLLUMAZINE HYDRATES - STEREOSELECTIVE INTERACTION WITH THE LIGHT RIBOFLAVIN SYNTHASE OF BACILLUS-SUBTILIS
    CUSHMAN, M
    PATRICK, DA
    BACHER, A
    SCHEURING, J
    [J]. JOURNAL OF ORGANIC CHEMISTRY, 1991, 56 (15) : 4603 - 4608
  • [6] F-19 NMR-STUDIES ON THE MECHANISM OF RIBOFLAVIN SYNTHASE - SYNTHESIS OF 6-(TRIFLUOROMETHYL)-7-OXO-8-(D-RIBITYL)LUMAZINE AND 6-(TRIFLUOROMETHYL)-7-METHYL-8-(D-RIBITYL)LUMAZINE
    CUSHMAN, M
    PATEL, HH
    SCHEURING, J
    BACHER, A
    [J]. JOURNAL OF ORGANIC CHEMISTRY, 1992, 57 (21) : 5630 - 5643
  • [7] Domain structure of riboflavin synthase
    Eberhardt, S
    Zingler, N
    Kemter, K
    Richter, G
    Cushman, M
    Bacher, A
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (15): : 4315 - 4323
  • [8] Fischer Markus, 2003, BMC Biochemistry, V4, P18, DOI 10.1186/1471-2091-4-18
  • [9] Studies on the reaction mechanism of riboflavin synthase: X-ray crystal structure of a complex with 6-carboxyethyl-7-oxo-8-ribityllumazine
    Gerhardt, S
    Schott, AK
    Kairies, N
    Cushman, M
    Illarionov, B
    Eisenreich, W
    Bacher, A
    Huber, R
    Steinbacher, S
    Fischer, M
    [J]. STRUCTURE, 2002, 10 (10) : 1371 - 1381
  • [10] HARVEY RA, 1966, J BIOL CHEM, V241, P2120