Small angle X-ray scattering-assisted protein structure prediction in CASP13 and emergence of solution structure differences

被引:22
作者
Hura, Greg L. [1 ,2 ]
Hodge, Curtis D. [1 ]
Rosenberg, Daniel [1 ]
Guzenko, Dmytro [3 ]
Duarte, Jose M. [3 ]
Monastyrskyy, Bohdan [4 ]
Grudinin, Sergei [5 ]
Kryshtafovych, Andriy [4 ]
Tainer, John A. [1 ,6 ]
Fidelis, Krzysztof [4 ]
Tsutakawa, Susan E. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA
[2] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[3] Univ Calif San Diego, San Diego Supercomp Ctr, Res Collaboratory Struct Bioinformat Prot Data Ba, La Jolla, CA 92093 USA
[4] Univ Calif Davis, Genome & Biomed Sci Facil, Prot Struct Predict Ctr, Davis, CA 95616 USA
[5] Univ Grenoble Alpes, CNRS, INRIA, Grenoble INP,LJK, F-38000 Grenoble, France
[6] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA
基金
美国国家科学基金会;
关键词
complexes; disorder; experimental restraints; flexibility; modeling; SAS; SAXS; solution scattering; structure prediction; unstructured regions; SAXS; CRYSTALLOGRAPHY; CONFORMATIONS; RESOLUTION; UBIQUITIN; MODELS;
D O I
10.1002/prot.25827
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Small angle X-ray scattering (SAXS) measures comprehensive distance information on a protein's structure, which can constrain and guide computational structure prediction algorithms. Here, we evaluate structure predictions of 11 monomeric and oligomeric proteins for which SAXS data were collected and provided to predictors in the 13th round of the Critical Assessment of protein Structure Prediction (CASP13). The category for SAXS-assisted predictions made gains in certain areas for CASP13 compared to CASP12. Improvements included higher quality data with size exclusion chromatography-SAXS (SEC-SAXS) and better selection of targets and communication of results by CASP organizers. In several cases, we can track improvements in model accuracy with use of SAXS data. For hard multimeric targets where regular folding algorithms were unsuccessful, SAXS data helped predictors to build models better resembling the global shape of the target. For most models, however, no significant improvement in model accuracy at the domain level was registered from use of SAXS data, when rigorously comparing SAXS-assisted models to the best regular server predictions. To promote future progress in this category, we identify successes, challenges, and opportunities for improved strategies in prediction, assessment, and communication of SAXS data to predictors. An important observation is that, for many targets, SAXS data were inconsistent with crystal structures, suggesting that these proteins adopt different conformation(s) in solution. This CASP13 result, if representative of PDB structures and future CASP targets, may have substantive implications for the structure training databases used for machine learning, CASP, and use of prediction models for biology.
引用
收藏
页码:1298 / 1314
页数:17
相关论文
共 38 条
[31]   DETERMINATION OF THE REGULARIZATION PARAMETER IN INDIRECT-TRANSFORM METHODS USING PERCEPTUAL CRITERIA [J].
SVERGUN, DI .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1992, 25 :495-503
[32]   Determination of domain structure of proteins from X-ray solution scattering [J].
Svergun, DI ;
Petoukhov, MV ;
Koch, MHJ .
BIOPHYSICAL JOURNAL, 2001, 80 (06) :2946-2953
[33]   Assessment of data-assisted prediction by inclusion of crosslinking/mass-spectrometry and small angle X-ray scattering data in the 12th Critical Assessment of protein Structure Prediction experiment [J].
Tamo, Giorgio E. ;
Abriata, Luciano A. ;
Fonti, Giulia ;
Dal Peraro, Matteo .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2018, 86 :215-227
[34]   Structurally Distinct Ubiquitin- and Sumo-Modified PCNA: Implications for Their Distinct Roles in the DNA Damage Response [J].
Tsutakawa, Susan E. ;
Yan, Chunli ;
Xu, Xiaojun ;
Weinacht, Christopher P. ;
Freudenthal, Bret D. ;
Yang, Kun ;
Zhuang, Zhihao ;
Washington, M. Todd ;
Tainer, John A. ;
Ivanov, Ivaylo .
STRUCTURE, 2015, 23 (04) :724-733
[35]   Solution X-ray scattering combined with computational modeling reveals multiple conformations of covalently bound ubiquitin on PCNA [J].
Tsutakawa, Susan E. ;
Van Wynsberghe, Adam W. ;
Freudenthal, Bret D. ;
Weinacht, Christopher P. ;
Gakhar, Lokesh ;
Washington, M. Todd ;
Zhuang, Zhihao ;
Tainer, John A. ;
Ivanov, Ivaylo .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (43) :17672-17677
[36]   The SAXS solution structure of RF1 differs from its crystal structure and is similar to its ribosome bound cryo-EM structure [J].
Vestergaard, B ;
Sanyal, S ;
Roessle, M ;
Mora, L ;
Buckingham, RH ;
Kastrup, JS ;
Gajhede, M ;
Svergun, DI ;
Ehrenberg, M .
MOLECULAR CELL, 2005, 20 (06) :929-938
[37]   UCSF Chimera, MODELLER, and IMP: An integrated modeling system [J].
Yang, Zheng ;
Lasker, Keren ;
Schneidman-Duhovny, Dina ;
Webb, Ben ;
Huang, Conrad C. ;
Pettersen, Eric F. ;
Goddard, Thomas D. ;
Meng, Elaine C. ;
Sali, Andrej ;
Ferrin, Thomas E. .
JOURNAL OF STRUCTURAL BIOLOGY, 2012, 179 (03) :269-278
[38]   Flexible Tethering of ASPP Proteins Facilitates PP-1c Catalysis [J].
Zhou, Yeyun ;
Millott, Robyn ;
Kim, Hyeong Jin ;
Peng, Shiyun ;
Edwards, Ross A. ;
Skene-Arnold, Tamara ;
Hammel, Michal ;
Lees-Miller, Susan P. ;
Tainer, John A. ;
Holmes, Charles F. B. ;
Glover, J. N. Mark .
STRUCTURE, 2019, 27 (10) :1485-+