Computation of symbolic dynamics for one-dimensional maps

被引:5
作者
Sella, Lorenzo [1 ]
Collins, Pieter [1 ]
机构
[1] Ctr Wiskunde & Informat, NL-1090 GB Amsterdam, Netherlands
关键词
One-dimensional map; Kneading theory; Symbolic dynamics; Interval arithmetic; TOPOLOGICAL-ENTROPY; KNEADING THEORY; INVARIANTS; INTERVAL;
D O I
10.1016/j.cam.2009.12.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we design and implement rigorous algorithms for computing symbolic dynamics for piecewise-monotone-continuous maps of the interval. The algorithms are based on computing forwards and backwards approximations of the boundary, discontinuity and critical points. We explain how to handle the discontinuities in the symbolic dynamics which occur when the computed partition element boundaries are not disjoint. The method is applied to compute the symbolic dynamics and entropy bounds for the return map of the singular limit of a switching system with hysteresis and the forced Van der Pol equation. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:418 / 436
页数:19
相关论文
共 50 条
  • [31] An effective numerical method of the word-lifting technique in one-dimensional multimodal maps
    Zhou, Z
    Cao, KF
    PHYSICS LETTERS A, 2003, 310 (01) : 52 - 59
  • [32] Symbolic dynamics of two coupled Lorenz maps: From uncoupled regime to synchronisation
    Coutinho, R.
    Fernandez, B.
    Guiraud, P.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (19) : 2444 - 2462
  • [33] Using Invariant Manifolds to Construct Symbolic Dynamics for Three-Dimensional Volume-Preserving Maps
    Maelfeyt, Bryan
    Smith, Spencer A.
    Mitchell, Kevin A.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (01): : 729 - 769
  • [34] Symbolic dynamics and chaotic synchronization
    Caneco, Acilina
    Gracio, Clara
    Rocha, J. Leone
    CHAOS THEORY: MODELING, SIMULATION AND APPLICATIONS, 2011, : 135 - 142
  • [35] One-dimensional dynamical systems
    Efremova, L. S.
    Makhrova, E. N.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (05) : 821 - 881
  • [36] Robustness and an application of a one-dimensional window-map based on rotation dynamics
    Matsuoka, Yusuke
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2012, 3 (04): : 533 - 545
  • [37] Natural invariant measures, divergence points and dimension in one-dimensional holomorphic dynamics
    Ingle, William
    Kaufmann, Jacie
    Wolf, Christian
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 1235 - 1255
  • [38] Complexity of bio-computation: Symbolic dynamics in membrane systems
    Muskulus, M
    Brijder, R
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2006, 17 (01) : 147 - 165
  • [39] UNIVERSAL FORM OF RENORMALIZABLE KNOTS IN SYMBOLIC DYNAMICS OF BIMODAL MAPS
    Gao, Wen
    Xu, Chuan-Yun
    Peng, Shou-Li
    Cao, Ke-Fei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (09):
  • [40] Cyclic star products and universalities in symbolic dynamics of trimodal maps
    Zhou, Z
    Peng, SL
    PHYSICA D, 2000, 140 (3-4): : 213 - 226