Strong localization in weakly disordered epitaxial graphene

被引:3
|
作者
Slawig, Diana [1 ]
Gruschwitz, Markus [2 ]
Tegenkamp, Christoph [1 ,2 ]
机构
[1] Leibniz Univ Hannover, Inst Festkorperphys, Appelstr 2, D-30167 Hannover, Germany
[2] Tech Univ Chemnitz, Inst Phys, Reichenhainer Str 70, D-09126 Chemnitz, Germany
关键词
Graphene; Atomic hydrogen adsorption; Surface transport; Metal insulator transition; Ioffe-Regel criterion; HYDROGEN ADSORPTION; BAND-GAP; STORAGE; ATOMS;
D O I
10.1016/j.susc.2021.121801
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We studied the adsorption of atomic hydrogen on monolayer graphene and quasi free monolayer graphene, epitaxially grown on SiC(0001). By means of in-situ surface transport measurements, a metal-insulator transition was found on both n- and p-type doped two dimensional electron systems. The detailed analysis of the temperature dependent resistivity revealed that even ultra-low concentrations (n(H) approximate to 10(12) cm(-2)) of locally chemisorbed H-clusters act as effective scattering centers for the propagating electrons and limit the mean-free path L-0 proportional to 1/root n(H). Despite the weak disorder due to adsorption, strong localization was found. The activation energy for destroying the phase coherence within the system is around 30 meV. Our analysis rules out the formation of a band insulator or even a "bad metal" due to adsorption of hydrogen.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Growth, morphology and electronic properties of epitaxial graphene on vicinal Ir(332) surface
    Celis, A.
    Nair, M. N.
    Sicot, M.
    Nicolas, F.
    Kubsky, S.
    Taleb-Ibrahimi, A.
    Malterre, D.
    Tejeda, A.
    NANOTECHNOLOGY, 2020, 31 (28)
  • [42] Electrochemical Li+ Insertion/Extraction Reactions at LiPON/Epitaxial Graphene Interfaces
    Yamamoto, Satoshi
    Motoyama, Munekazu
    Suzuki, Masahiko
    Sakakibara, Ryotaro
    Ishigaki, Norikazu
    Kumatani, Akichika
    Norimatsu, Wataru
    Iriyama, Yasutoshi
    ACS NANO, 2023, 17 (17) : 16448 - 16460
  • [43] Structural and Electronic Decoupling of C60 from Epitaxial Graphene on SiC
    Cho, Jongweon
    Smerdon, Joseph
    Gao, Li
    Suezer, Oezguen
    Guest, Jeffrey R.
    Guisinger, Nathan P.
    NANO LETTERS, 2012, 12 (06) : 3018 - 3024
  • [44] Electronic heat capacity in disordered graphene systems
    Grosu, I.
    Biter, T. -L.
    PHYSICS LETTERS A, 2018, 382 (41) : 3042 - 3045
  • [45] Quantum transport in disordered graphene: A theoretical perspective
    Roche, Stephan
    Leconte, Nicolas
    Ortmann, Frank
    Lherbier, Aurelien
    Soriano, David
    Charlier, Jean-Christophe
    SOLID STATE COMMUNICATIONS, 2012, 152 (15) : 1404 - 1410
  • [46] Anomalous Hooke's law in disordered graphene
    Gornyi, I. V.
    Kachorovskii, V. Yu
    Mirlin, A. D.
    2D MATERIALS, 2017, 4 (01):
  • [47] Abnormal electronic transport in disordered graphene nanoribbon
    Zhang, Yan-Yang
    Hu, Jiang-Ping
    Xie, X. C.
    Liu, W. M.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (16) : 2259 - 2262
  • [48] Veselago lens and Klein collimator in disordered graphene
    Libisch, F.
    Hisch, T.
    Glattauer, R.
    Chizhova, L. A.
    Burgdoerfer, J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (11)
  • [49] Electronic properties of disordered graphene antidot lattices
    Yuan, Shengjun
    Roldan, Rafael
    Jauho, Antti-Pekka
    Katsnelson, M. I.
    PHYSICAL REVIEW B, 2013, 87 (08)
  • [50] Growth Rate and Thickness Uniformity of Epitaxial Graphene
    Strupinski, W.
    Drabinska, A.
    Bozek, R.
    Borysiuk, J.
    Wysmolek, A.
    Stepniewski, R.
    Kosciewicz, K.
    Caban, P.
    Korona, K.
    Grodecki, K.
    Geslin, Pierre-Antoine
    Baranowski, J. M.
    SILICON CARBIDE AND RELATED MATERIALS 2009, PTS 1 AND 2, 2010, 645-648 : 569 - +