Solvable model of a double quantum electron layer in a magnetic field

被引:2
作者
Geyler, VA [1 ]
Popov, IY
机构
[1] Mordovian NP Ogarev State Univ, Dept Math, Saransk 430000, Russia
[2] Leningrad Inst Fine Mech, Dept Higher Math, St Petersburg 197101, Russia
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1998年 / 454卷 / 1970期
关键词
double quantum layer; magnetic field; Landau operator; solvable model; operator extension theory; periodic array;
D O I
10.1098/rspa.1998.0181
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A solvable model of a double quantum electron layer in a magnetic field based on the theory of self-adjoint extensions of symmetric operators is suggested. The spectral problem reduces to a finite-dimensional one through the use of harmonic analysis on a magnetic translations group. Properties of a gap between symmetric and antisymmetric states are discussed. The model gives a linear dependence of spectral parameters on a magnetic field B.
引用
收藏
页码:697 / 705
页数:9
相关论文
共 21 条
[1]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics
[2]  
[Anonymous], USPEKHI MAT NAUK
[3]  
Bateman H., 1953, Higher transcendental functions
[4]  
BEREZIN FA, 1961, DOKL AKAD NAUK SSSR+, V137, P1011
[5]   MEASUREMENT OF FERMI-SURFACE DISTORTION IN DOUBLE QUANTUM-WELLS FROM INPLANE MAGNETIC-FIELDS [J].
BOEBINGER, GS ;
PASSNER, A ;
PFEIFFER, LN ;
WEST, KW .
PHYSICAL REVIEW B, 1991, 43 (15) :12673-12676
[6]   MAGNETIC-FIELD-DRIVEN DESTRUCTION OF QUANTUM HALL STATES IN A DOUBLE QUANTUM-WELL [J].
BOEBINGER, GS ;
JIANG, HW ;
PFEIFFER, LN ;
WEST, KW .
PHYSICAL REVIEW LETTERS, 1990, 64 (15) :1793-1796
[8]   TUNNELING BETWEEN 2-DIMENSIONAL ELECTRON GASES IN A STRONG MAGNETIC-FIELD [J].
BROWN, KM ;
TURNER, N ;
NICHOLLS, JT ;
LINFIELD, EH ;
PEPPER, M ;
RITCHIE, DA ;
JONES, GAC .
PHYSICAL REVIEW B, 1994, 50 (20) :15465-15468
[9]   CORRELATED CHARGE-DENSITY-WAVE STATES OF DOUBLE-QUANTUM-WELL SYSTEMS IN A STRONG MAGNETIC-FIELD [J].
CHEN, XM ;
QUINN, JJ .
PHYSICAL REVIEW B, 1992, 45 (19) :11054-11066
[10]   ON NONLOCAL POINT INTERACTIONS IN ONE, 2, AND 3 DIMENSIONS [J].
DABROWSKI, L ;
GROSSE, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (11) :2777-2780