Using simulation to interpret experimental data in terms of protein conformational ensembles

被引:35
作者
Allison, Jane R. [1 ,2 ,3 ]
机构
[1] Massey Univ Auckland, Ctr Theoret Chem & Phys, Inst Nat & Math Sci, Auckland 0632, New Zealand
[2] Univ Canterbury, Biomol Interact Ctr, Private Bag 4800, Christchurch 8140, New Zealand
[3] Univ Auckland, Maurice Wilkins Ctr Mol Biodiscovery, Private Bag 92019, Auckland, New Zealand
关键词
MOLECULAR-DYNAMICS SIMULATIONS; RESIDUAL DIPOLAR COUPLINGS; NMR CHEMICAL-SHIFTS; AVERAGED STRUCTURAL RESTRAINTS; TENSOR-FREE METHOD; X-RAY-SCATTERING; STATISTICAL-MECHANICS; STRUCTURE REFINEMENT; GUIDED METADYNAMICS; CROSS-VALIDATION;
D O I
10.1016/j.sbi.2016.11.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In their biological environment, proteins are dynamic molecules, necessitating an ensemble structural description. Molecular dynamics simulations and solution-state experiments provide complimentary information in the form of atomically detailed coordinates and averaged or distributions of structural properties or related quantities. Recently, increases in the temporal and spatial scale of conformational sampling and comparison of the more diverse conformational ensembles thus generated have revealed the importance of sampling rare events. Excitingly, new methods based on maximum entropy and Bayesian inference are promising to provide a statistically sound mechanism for combining experimental data with molecular dynamics simulations.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 73 条
  • [1] A Method to Explore Protein Side Chain Conformational Variability Using Experimental Data
    Allison, Jane R.
    van Gunsteren, Wilfred F.
    [J]. CHEMPHYSCHEM, 2009, 10 (18) : 3213 - 3228
  • [2] Bayesian inference of protein ensembles from SAXS data
    Antonov, L. D.
    Olsson, S.
    Boomsma, W.
    Hamelryck, T.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (08) : 5832 - 5838
  • [3] Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements
    Beauchamp, Kyle A.
    Lin, Yu-Shan
    Das, Rhiju
    Pande, Vijay S.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (04) : 1409 - 1414
  • [4] Structural characterization of flexible proteins using small-angle X-ray scattering
    Bernado, Pau
    Mylonas, Efstratios
    Petoukhov, Maxim V.
    Blackledge, Martin
    Svergun, Dmitri I.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (17) : 5656 - 5664
  • [5] Determination of protein structures consistent with NMR order parameters
    Best, RB
    Vendruscolo, M
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (26) : 8090 - 8091
  • [6] Metainference: A Bayesian inference method for heterogeneous systems
    Bonomi, Massimiliano
    Camilloni, Carlo
    Cavalli, Andrea
    Vendruscolo, Michele
    [J]. SCIENCE ADVANCES, 2016, 2 (01):
  • [7] CONFORMATIONAL VARIABILITY OF SOLUTION NUCLEAR-MAGNETIC-RESONANCE STRUCTURES
    BONVIN, AMJJ
    BRUNGER, AT
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1995, 250 (01) : 80 - 93
  • [8] Combining Experiments and Simulations Using the Maximum Entropy Principle
    Boomsma, Wouter
    Ferkinghoff-Borg, Jesper
    Lindorff-Larsen, Kresten
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (02)
  • [9] Accurately Modeling Nanosecond Protein Dynamics Requires at least Microseconds of Simulation
    Bowman, Gregory R.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2016, 37 (06) : 558 - 566
  • [10] ASSESSING THE QUALITY OF SOLUTION NUCLEAR-MAGNETIC-RESONANCE STRUCTURES BY COMPLETE CROSS-VALIDATION
    BRUNGER, AT
    CLORE, GM
    GRONENBORN, AM
    SAFFRICH, R
    NILGES, M
    [J]. SCIENCE, 1993, 261 (5119) : 328 - 331