Asymptotic behavior of Laplace integrals and geometric characteristics of convex functions

被引:1
|
作者
Napalkov, V. V.
Bashmakov, R. A.
Yulmukhametov, R. S.
机构
[1] Russian Acad Sci, Math Inst, Ufa Sci Ctr, Ufa 450077, Russia
[2] Bashkir State Univ, Ufa 450074, Russia
关键词
Asymptotic Behavior; Convex Function; Geometric Characteristic; DOKLADY Mathematic; Supporting Hyperplane;
D O I
10.1134/S1064562407020044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The asymptotic behavior of Laplace integrals and geometric characteristics of convex functions are analyzed. The results show that the set of points on a convex space onto a convex space is defined by a convex function depending on the Laplace integral. It is also shown that the convex set contains the origin and the convex space is the supreme of the convex points in the convex domain. In the one-dimensional case, the volume distance is considered in more detail and give definitions that are in a sense equivalent.
引用
收藏
页码:190 / 192
页数:3
相关论文
共 50 条
  • [41] Hermite-Hadamard Type Inequalities for h-Convex Functions Via Generalized Fractional Integrals
    Ali, M. Aamir
    Budak, H.
    Abbas, M.
    Sarikaya, M. Z.
    Kashuri, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (04) : 187 - 234
  • [42] NEW INEQUALITIES OF OSTROWSKI TYPE FOR CO-ORDINATED CONVEX FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS
    Ali, Muhammad Aamir
    Budak, Huseyin
    Zhang, Zhiyue
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (04): : 899 - 917
  • [43] CONVEX CONSERVATION-LAWS WITH DISCONTINUOUS COEFFICIENTS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR
    KLINGENBERG, C
    RISEBRO, NH
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (11-12) : 1959 - 1990
  • [44] On the asymptotic behavior of functions of local dynamical systems admitting the first approximation
    E. Yu. Mychka
    Differential Equations, 2012, 48 : 1188 - 1191
  • [45] Asymptotic behavior of the p-torsion functions as p goes to 1
    Bueno, Hamilton
    Ercole, Grey
    Macedo, Shirley S.
    ARCHIV DER MATHEMATIK, 2016, 107 (01) : 63 - 72
  • [46] The asymptotic behavior of a class of φ-harmonic functions in Orlicz-Sobolev spaces
    Stancu-Dumitru, Denisa
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (01) : 365 - 376
  • [47] On the asymptotic behavior of functions of local dynamical systems admitting the first approximation
    Mychka, E. Yu.
    DIFFERENTIAL EQUATIONS, 2012, 48 (08) : 1188 - 1191
  • [48] Asymptotic behavior of the p-torsion functions as p goes to 1
    Hamilton Bueno
    Grey Ercole
    Shirley S. Macedo
    Archiv der Mathematik, 2016, 107 : 63 - 72
  • [49] A NOTE ON HERMITE-HADAMARD INEQUALITIES FOR PRODUCTS OF CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Chen, Feixiang
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 299 - 306
  • [50] SOME INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR DIFFERENTIABLE (s, m)-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
    Bayraktar, B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (03): : 625 - 637