Annihilator conditions on modules over commutative rings

被引:9
作者
Anderson, D. D. [1 ]
Chun, Sangmin [2 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
关键词
Zero divisors; annihilator; Property A; Property T; idealization; TORSION ELEMENTS; IDEALS;
D O I
10.1142/S0219498817501432
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative ring and M an R-module. Let Z(M) = {r is an element of R| rm = 0 for some nonzero m is an element of M} and T(M) = {m is an element of M | rm = 0 for some nonzero r is an element of R} M satisfies Property A (respectively, Property T) if for each finitely generated ideal I subset of Z(M) (respectively, finitely generated submodule N subset of T(M)) ann (M)(I) not equal 0 (respectively, ann (R)(N) not equal 0). The ring R satisfies Property A if R-R does. We study rings and modules satisfying Property A or Property T. A number of examples are given, many using the method of idealization.
引用
收藏
页数:19
相关论文
共 15 条
[1]   ZERO-DIVISORS, TORSION ELEMENTS, AND UNIONS OF ANNIHILATORS [J].
Anderson, D. D. ;
Chun, Sangmin .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (01) :76-83
[2]   THE SET OF TORSION ELEMENTS OF A MODULE [J].
Anderson, D. D. ;
Chun, Sangmin .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (04) :1835-1843
[3]   IDEALIZATION OF A MODULE [J].
Anderson, D. D. ;
Winders, Michael .
JOURNAL OF COMMUTATIVE ALGEBRA, 2009, 1 (01) :3-56
[4]  
Darani AY, 2010, AN STI U OVID CO-MAT, V18, P59
[5]   On the Strong (A)-Rings of Mahdou and Hassani [J].
Dobbs, David E. ;
Shapiro, Jay .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (04) :1995-1997
[6]  
FAITH C, 1991, COMMUN ALGEBRA, V19, P1867
[7]   Rings with property (A) and their extensions [J].
Hong, Chan Yong ;
Kim, Nam Kyun ;
Lee, Yang ;
Ryu, Sung Ju .
JOURNAL OF ALGEBRA, 2007, 315 (02) :612-628
[8]  
Huckaba J. A., 1988, COMMUTATIVE RINGS ZE
[9]   ANNIHILATION OF IDEALS IN COMMUTATIVE RINGS [J].
HUCKABA, JA ;
KELLER, JM .
PACIFIC JOURNAL OF MATHEMATICS, 1979, 83 (02) :375-379
[10]  
Kaplansky I., 1994, COMMUTATIVE RINGS