Development of Add-On Planar Translational Driving System for Aerial Manipulation with Multirotor Platform

被引:5
作者
Miyazaki, Ryo [1 ]
Paul, Hannibal [1 ]
Shimonomura, Kazuhiro [1 ]
机构
[1] Ritsumeikan Univ, Dept Robot, Shiga 5258577, Japan
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 04期
关键词
aerial manipulation; multirotor UAV; translational driving system; DESIGN; IMPACT; ROBOT;
D O I
10.3390/app11041462
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We propose an add-on planar translational driving system (ATD) which can be equipped on a multirotor platform for aerial manipulation. The device is lightweight and consists of three ducted fans controlled via an on-board CPU. It uses a simple control method and enables a multirotor to perform positioning and generate force in two dimensions while keeping the airframe horizontal. By translating the multirotor without changing attitude, it can more smoothly and easily perform many types of aerial manipulation tasks with higher positioning accuracy. In this paper, we mainly show the design, modeling, and control of the ATD. Several preliminary experiments were performed to verify the positioning accuracy and effectiveness of the system. In addition, we successfully performed the push and pull task using a rigid arm.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 17 条
  • [1] Design and optimal control of a tiltrotor micro-aerial vehicle for efficient omnidirectional flight
    Allenspach, Mike
    Bodie, Karen
    Brunner, Maximilian
    Rinsoz, Luca
    Taylor, Zachary
    Kamel, Mina
    Siegwart, Roland
    Nieto, Juan
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (10-11) : 1305 - 1325
  • [2] A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems
    Ding, Xilun
    Guo, Pin
    Xu, Kun
    Yu, Yushu
    [J]. CHINESE JOURNAL OF AERONAUTICS, 2019, 32 (01) : 200 - 214
  • [3] Fumagalli M, 2012, IEEE INT C INT ROBOT, P3532, DOI 10.1109/IROS.2012.6385917
  • [4] Stable impact and contact force control by UAV for inspection of floor slab of bridge
    Ikeda, Takahiro
    Yasui, Shogo
    Minamiyama, Satoshi
    Ohara, Kenichi
    Ashizawa, Satoshi
    Ichikawa, Akihiko
    Okino, Akihisa
    Oomichi, Takeo
    Fukuda, Toshio
    [J]. ADVANCED ROBOTICS, 2018, 32 (19) : 1061 - 1076
  • [5] The impact of small unmanned airborne platforms on passive optical remote sensing: a conceptual perspective
    Lippitt, Christopher D.
    Zhang, Su
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (15-16) : 4852 - 4868
  • [6] Snake Aerial Manipulators: A Review
    Mendoza-Mendoza, Julio
    Gonzalez-Villela, Victor J.
    Aguilar-Ibanez, Carlos
    Santiago Suarez-Castanon, Miguel
    Fonseca-Ruiz, Leonardo
    [J]. IEEE ACCESS, 2020, 8 : 28222 - 28241
  • [7] Large attitude change flight of a quad tilt rotor unmanned aerial vehicle
    Oosedo, Atsushi
    Abiko, Satoko
    Narasaki, Shota
    Kuno, Atsushi
    Konno, Atsushi
    Uchiyama, Masaru
    [J]. ADVANCED ROBOTICS, 2016, 30 (05) : 326 - 337
  • [8] Park S, 2019, IEEE INT CONF ROBOT, P704, DOI [10.1109/icra.2019.8794080, 10.1109/ICRA.2019.8794080]
  • [9] ODAR: Aerial Manipulation Platform Enabling Omnidirectional Wrench Generation
    Park, Sangyul
    Lee, Jeongseob
    Ahn, Joonmo
    Kim, Myungsin
    Her, Jongbeom
    Yang, Gi-Hun
    Lee, Dongjun
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (04) : 1907 - 1918
  • [10] Paul H, 2018, IEEE ASME INT C ADV, P478, DOI 10.1109/AIM.2018.8452699