Predictive Modeling of Alzheimer's and Parkinson's Disease Using Metabolomic and Lipidomic Profiles from Cerebrospinal Fluid

被引:13
作者
Hwangbo, Nathan [1 ]
Zhang, Xinyu [2 ]
Raftery, Daniel [2 ]
Gu, Haiwei [2 ]
Hu, Shu-Ching [3 ,4 ]
Montine, Thomas J. [5 ]
Quinn, Joseph F. [6 ,7 ]
Chung, Kathryn A. [6 ,7 ]
Hiller, Amie L. [6 ,7 ]
Wang, Dongfang [2 ,11 ]
Fei, Qiang [2 ]
Bettcher, Lisa [2 ]
Zabetian, Cyrus P. [3 ,4 ]
Peskind, Elaine R. [3 ,8 ]
Li, Ge [3 ,8 ]
Promislow, Daniel E. L. [9 ,10 ]
Davis, Marie Y. [3 ,4 ]
Franks, Alexander [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
[2] Univ Washington, Northwest Metabol Res Ctr, Dept Anesthesiol & Pain Med, Sch Med, Seattle, WA 98195 USA
[3] Vet Affairs Puget Sound Hlth Care Syst, Seattle, WA 98108 USA
[4] Univ Washington, Dept Neurol, Sch Med, Seattle, WA 98195 USA
[5] Stanford Univ, Dept Pathol, Sch Med, Palo Alto, CA 94304 USA
[6] Portland VA Med Ctr, Portland, OR 97239 USA
[7] Oregon Hlth & Sci Univ, Dept Neurol, Portland, OR 97239 USA
[8] Univ Washington, Dept Psychiat & Behav Sci, Sch Med, Seattle, WA 98102 USA
[9] Univ Washington, Dept Biol, Seattle, WA 98105 USA
[10] Univ Washington, Dept Lab Med & Pathol, Sch Med, Seattle, WA 98195 USA
[11] Chongqing Med Univ, Affiliated Hosp 1, Chongqing 400016, Peoples R China
基金
美国国家卫生研究院;
关键词
predictive modeling; biomarker; cerebrospinal fluid; cross-sectional study; neurodegenerative disease; CREATINE-KINASE BB; PLASMA; BRAIN; IDENTIFICATION; BIOMARKERS; CERAMIDE; CSF; SPHINGOLIPIDS; PROGRESSION; DEFICIENCY;
D O I
10.3390/metabo12040277
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, metabolomics has been used as a powerful tool to better understand the physiology of neurodegenerative diseases and identify potential biomarkers for progression. We used targeted and untargeted aqueous, and lipidomic profiles of the metabolome from human cerebrospinal fluid to build multivariate predictive models distinguishing patients with Alzheimer's disease (AD), Parkinson's disease (PD), and healthy age-matched controls. We emphasize several statistical challenges associated with metabolomic studies where the number of measured metabolites far exceeds sample size. We found strong separation in the metabolome between PD and controls, as well as between PD and AD, with weaker separation between AD and controls. Consistent with existing literature, we found alanine, kynurenine, tryptophan, and serine to be associated with PD classification against controls, while alanine, creatine, and long chain ceramides were associated with AD classification against controls. We conducted a univariate pathway analysis of untargeted and targeted metabolite profiles and find that vitamin E and urea cycle metabolism pathways are associated with PD, while the aspartate/asparagine and c21-steroid hormone biosynthesis pathways are associated with AD. We also found that the amount of metabolite missingness varied by phenotype, highlighting the importance of examining missing data in future metabolomic studies.
引用
收藏
页数:28
相关论文
共 78 条
[51]  
Mochizuki Y, 1996, ANN CLIN LAB SCI, V26, P275
[52]  
Molina JA, 1997, J NEUROL SCI, V150, P123
[53]  
Morris C., 1979, J ECONOMETRICS, V11, P43, DOI [10.1016/0304-4076(79)90053-8, DOI 10.1016/0304-4076(79)90053-8]
[54]   NMR metabonomics of cerebrospinal fluid distinguishes between Parkinson's disease and controls [J].
Ohman, Anders ;
Forsgren, Lars .
NEUROSCIENCE LETTERS, 2015, 594 :36-39
[55]   MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics [J].
Pang, Zhiqiang ;
Chong, Jasmine ;
Li, Shuzhao ;
Xia, Jianguo .
METABOLITES, 2020, 10 (05)
[56]   Meta-analysis of Parkinson's Disease: Identification of a novel locus, RIT2 [J].
Pankratz, Nathan ;
Beecham, Gary W. ;
DeStefano, Anita L. ;
Dawson, Ted M. ;
Doheny, Kimberly F. ;
Factor, Stewart A. ;
Hamza, Taye H. ;
Hung, Albert Y. ;
Hyman, Bradley T. ;
Ivinson, Adrian J. ;
Krainc, Dmitri ;
Latourelle, Jeanne C. ;
Clark, Lorraine N. ;
Marder, Karen ;
Martin, Eden R. ;
Mayeux, Richard ;
Ross, Owen A. ;
Scherzer, Clemens R. ;
Simon, David K. ;
Tanner, Caroline ;
Vance, Jeffery M. ;
Wszolek, Zbigniew K. ;
Zabetian, Cyrus P. ;
Myers, Richard H. ;
Payami, Haydeh ;
Scott, William K. ;
Foroud, Tatiana .
ANNALS OF NEUROLOGY, 2012, 71 (03) :370-384
[57]   Circulating amino acid signature in older people with Parkinson's disease: A metabolic complement to the EXosomes in PArkiNson Disease (EXPAND) study [J].
Picca, Anna ;
Calvani, Riccardo ;
Landi, Giovanni ;
Marini, Federico ;
Biancolillo, Alessandra ;
Gervasoni, Jacopo ;
Persichilli, Silvia ;
Primiano, Aniello ;
Urbani, Andrea ;
Bossola, Maurizio ;
Bentivoglio, Anna Rita ;
Cesari, Matteo ;
Landi, Francesco ;
Bernabei, Roberto ;
Marzetti, Emanuele ;
Lo Monaco, Maria Rita .
EXPERIMENTAL GERONTOLOGY, 2019, 128
[58]   The Furan Fatty Acid Metabolite CMPF Is Elevated in Diabetes and Induces β Cell Dysfunction [J].
Prentice, Kacey J. ;
Luu, Lemieux ;
Allister, Emma M. ;
Liu, Ying ;
Jun, Lucy S. ;
Sloop, Kyle W. ;
Hardy, Alexandre B. ;
Wei, Li ;
Jia, Weiping ;
Fantus, I. George ;
Sweet, Douglas H. ;
Sweeney, Gary ;
Retnakaran, Ravi ;
Dai, Feihan F. ;
Wheeler, Michael B. .
CELL METABOLISM, 2014, 19 (04) :653-666
[59]   CSF proteome: a protein repository for potential biomarker identification [J].
Romeo, MJ ;
Espina, V ;
Lowenthal, M ;
Espina, BH ;
Petricoin, EF ;
Liotta, LA .
EXPERT REVIEW OF PROTEOMICS, 2005, 2 (01) :57-70
[60]  
Saar-Tsechansky M, 2007, J MACH LEARN RES, V8, P1625