Early oligodendrocyte progenitor cells in the human fetal telencephalon

被引:92
作者
Rakic, S [1 ]
Zecevic, N [1 ]
机构
[1] Univ Connecticut, Sch Med, Dept Neurosci, Farmington, CT 06030 USA
关键词
human brain development; transcription factors; oligodendrocyte lineage; microglia; hematopoietic stem cells; CENTRAL-NERVOUS-SYSTEM; NEURAL STEM-CELLS; MONOCLONAL-ANTIBODIES O1; PDGF ALPHA-RECEPTOR; SONIC HEDGEHOG; BASAL FOREBRAIN; IN-VIVO; CORTICAL INTERNEURONS; TRANSCRIPTION FACTOR; GANGLIONIC EMINENCE;
D O I
10.1002/glia.10140
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Oligodendrocytes, the myelin-producing cells in the central nervous system, represent a large portion of the total number of cells in the human brain. Using cell-specific markers and antibodies to ventral homeodomain transcription factors, NKX2.1 and DLX2, we show here that a subpopulation of early oligodendrocyte progenitor cells (OPCs) in the human telencephalon may originate in the ganglionic eminence (GE). DLX2-labeled OPCs form a well-delineated stream of cells connecting the GE subventricular zone (SVZ) to the cortical intermediate zone through the anterior cortical SVZ. This population of cells is labeled by early OPCs markers, PDGFRalpha, Olig1, and NG2, and not with either neuronal, astrocyte, or late OPCs markers. Intriguingly, numerous CD68(+) microglia/macrophages, nestin(+) neural stem cells, and CD34(+) hematopoietic stem cells (HSCs) are also present in both the GE stream and the cortical SVZ. These cells could be colabeled with DLX2 as well as early OPCs markers. A separate subpopulation of early OPCs, present in the GE and cortical SVZ, did not express either DLX2 or CD68. These findings suggest that different subpopulations of early OPCs, characterized with different sets of transcription factors and cell-specific markers, are present in human forebrain. These subpopulations may have different origins; one may originate in the cortical SVZ, while others may come from the GE and/or outside the CNS as hematopoietic stem cells.
引用
收藏
页码:117 / 127
页数:11
相关论文
共 81 条
[1]   Re-evaluation of nestin as a marker of oligodendrocyte lineage cells [J].
Almazán, G ;
Vela, JM ;
Molina-Holgado, E ;
Guaza, C .
MICROSCOPY RESEARCH AND TECHNIQUE, 2001, 52 (06) :753-765
[2]   Can stem cells cross lineage boundaries? [J].
Anderson, DJ ;
Gage, FH ;
Weissman, IL .
NATURE MEDICINE, 2001, 7 (04) :393-395
[3]   Interneuron migration from basal forebrain to neocortex: Dependence on Dlx genes [J].
Anderson, SA ;
Eisenstat, DD ;
Shi, L ;
Rubenstein, JLR .
SCIENCE, 1997, 278 (5337) :474-476
[4]  
Anderson SA, 2001, DEVELOPMENT, V128, P353
[5]   Macrophages/microglial cells in human central nervous system during development: an immunohistochemical study [J].
Andjelkovic, AV ;
Nikolic, B ;
Pachter, JS ;
Zecevic, N .
BRAIN RESEARCH, 1998, 814 (1-2) :13-25
[6]  
Back SA, 2001, J NEUROSCI, V21, P1302
[7]   MULTIPLE AND NOVEL SPECIFICITIES OF MONOCLONAL-ANTIBODIES O1, O4, AND R-MAB USED IN THE ANALYSIS OF OLIGODENDROCYTE DEVELOPMENT [J].
BANSAL, R ;
WARRINGTON, AE ;
GARD, AL ;
RANSCHT, B ;
PFEIFFER, SE .
JOURNAL OF NEUROSCIENCE RESEARCH, 1989, 24 (04) :548-557
[8]   A CRUCIAL ROLE FOR NEUROTROPHIN-3 IN OLIGODENDROCYTE DEVELOPMENT [J].
BARRES, BA ;
RAFF, MC ;
GAESE, F ;
BARTKE, I ;
DECHANT, G ;
BARDE, YA .
NATURE, 1994, 367 (6461) :371-375
[9]   Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice [J].
Bittner, RE ;
Schöfer, C ;
Weipoltshammer, K ;
Ivanova, S ;
Streubel, B ;
Hauser, E ;
Freilinger, M ;
Höger, H ;
Elbe-Bürger, A ;
Wachtler, F .
ANATOMY AND EMBRYOLOGY, 1999, 199 (05) :391-396
[10]   Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo [J].
Bjornson, CRR ;
Rietze, RL ;
Reynolds, BA ;
Magli, MC ;
Vescovi, AL .
SCIENCE, 1999, 283 (5401) :534-537