Probabilistic relaxation labeling by Fokker-Planck diffusion on a graph

被引:0
作者
Wang, Hong-Fang [1 ]
Hancock, Edwin R. [1 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5DD, North Yorkshire, England
来源
GRAPH-BASED REPRESENTATIONS IN PATTERN RECOGNITION, PROCEEDINGS | 2007年 / 4538卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we develop a new formulation of probabilistic relaxation labeling for the task of data classification using the theory of diffusion processes on graphs. The state space of our process as the nodes of a support graph which represent potential object-label assignments. The edge-weights of the support graph encode data-proximity and label consistency information. The state-vector of the diffusion process represents the object-label probabilities. The state vector evolves with time according to the Fokker-Planck equation. We show how the solution state vector can be estimated using the spectrum of the Laplacian matrix for the weighted support graph. Experiments on various data clustering tasks show effectiveness of our new algorithm.
引用
收藏
页码:204 / +
页数:3
相关论文
共 27 条
[1]  
Agarwal A, 2004, LECT NOTES COMPUT SC, V3023, P54
[2]  
Belkin M., 2001, NIPS
[3]  
Blake C.L., 1998, UCI repository of machine learning databases
[4]  
Chung F, 1997, C BOARD MATH SCI AM
[5]  
FAUGERAS O, 1981, IEEE T PAMI, V3
[6]  
FISCHER I, 2000, IDSIA1204
[7]   EDGE-LABELING USING DICTIONARY-BASED RELAXATION [J].
HANCOCK, ER ;
KITTLER, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (02) :165-181
[8]   ON THE FOUNDATIONS OF RELAXATION LABELING PROCESSES [J].
HUMMEL, RA ;
ZUCKER, SW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1983, 5 (03) :267-287
[9]  
Kittler J., 1989, International Journal of Pattern Recognition and Artificial Intelligence, V3, P29, DOI 10.1142/S021800148900005X
[10]  
Kondor R. I., 2002, P 19 INT C MACH LEAR, V2002, P315, DOI DOI 10.1109/ACCESS.2020.2967348