Sub-ppm CO detection in a sub-meter-long hollow-core negative curvature fiber using absorption spectroscopy at 2.3 μm

被引:50
作者
Yao, Chenyu [1 ]
Xiao, Limin [2 ]
Gao, Shoufei [3 ]
Wang, Yingying [3 ]
Wang, Pu [3 ]
Kan, Ruifeng [4 ]
Jin, Wei [5 ]
Ren, Wei [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
[2] Fudan Univ, Key Lab Micro & Nano Photon Struct MoE, Adv Fiber Devices & Syst Grp,Shanghai Engn Res Ct, Key Lab Informat Sci Electromagnet Waves MoE, Shanghai 200433, Peoples R China
[3] Beijing Univ Technol, Inst Laser Engn, Beijing Engn Res Ctr Laser Technol, Beijing 100124, Peoples R China
[4] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Appl Opt, Changchun 130033, Jilin, Peoples R China
[5] Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
关键词
CO sensor; Infrared absorption spectroscopy; Hollow-Core fiber; Photonic crystal fiber; PHOTONIC BANDGAP FIBER; LASER-ABSORPTION; ANTIRESONANT FIBERS; COMBUSTION GASES; SENSOR; TRANSMISSION; TEMPERATURE; SYSTEM; TIME;
D O I
10.1016/j.snb.2019.127238
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We demonstrated the sensitive CO detection in a novel hollow-core negative curvature fiber (HC-NCF) with infrared laser absorption at 2.3 mu m. The HC-NCF consists of a single ring of eight nontouching silica capillaries around the air core, providing a single-mode light delivery of the 2.3-mu m distributed feedback laser. A high coupling efficiency of 90% was achieved with the aid of optimal free-space coupling optics. The hollow-core fiber was used as a gas cell for gas absorption measurement of a total path length of 85 cm. Both direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) were adopted to demonstrate the sensor performance by detecting the CO line R(10) at 4297.7 cm(-1). In scanned-wavelength DAS, we obtained a minimum detection limit (MDL) of 13 ppm CO, which was limited mainly by the existing mode noise in the HC-NCF. By applying a pressure difference of 0.8 bar between the two ends of the fiber, we demonstrated a very short gas loading time of only 5 s. Finally, we achieved a MDL of 0.4 ppm CO using the WMS technique, corresponding to a noise equivalent absorption of 1.6 x 10(-7) cm(-1).
引用
收藏
页数:6
相关论文
共 28 条
[2]   Hollow antiresonant fibers with low bending loss [J].
Belardi, Walter ;
Knight, Jonathan C. .
OPTICS EXPRESS, 2014, 22 (08) :10091-10096
[3]   Absorption sensor for CO in combustion gases using 2.3 μm tunable diode lasers [J].
Chao, X. ;
Jeffries, J. B. ;
Hanson, R. K. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2009, 20 (11)
[4]   An early fire gas sensor based on 2.33 μm DFB laser [J].
Dang, Jingmin ;
Yu, Haiye ;
Song, Fang ;
Wang, Yiding ;
Sun, Yujing ;
Zheng, Chuantao .
INFRARED PHYSICS & TECHNOLOGY, 2018, 92 :84-89
[5]   AN ALL-FIBER GAS SENSING SYSTEM USING HOLLOW-CORE PHOTONIC BANDGAP FIBER AS GAS CELL [J].
Ding, Hui ;
Li, Xianli ;
Cui, Junhong ;
Dong, Shaofei ;
Yang, Le .
INSTRUMENTATION SCIENCE & TECHNOLOGY, 2011, 39 (01) :78-87
[6]   Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers [J].
Ebert, V ;
Teichert, H ;
Strauch, P ;
Kolb, T ;
Seifert, H ;
Wolfrum, J .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 :1611-1618
[7]   Bending loss characterization in nodeless hollow-core anti-resonant fiber [J].
Gao, Shou-Fei ;
Wang, Ying-Ying ;
Liu, Xiao-Lu ;
Ding, Wei ;
Wang, Pu .
OPTICS EXPRESS, 2016, 24 (13) :14801-14811
[8]   ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes [J].
Ghorbani, Ramin ;
Schmidt, Florian M. .
OPTICS EXPRESS, 2017, 25 (11) :12743-12752
[9]   The HITRAN2016 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hill, C. ;
Kochanov, R. V. ;
Tan, Y. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V. ;
Campargue, A. ;
Chance, K. V. ;
Drouin, B. J. ;
Flaud, J. -M. ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Perevalov, V. I. ;
Perrin, A. ;
Shine, K. P. ;
Smith, M. -A. H. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Barbe, A. ;
Csaszar, A. G. ;
Devi, V. M. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J. -M. ;
Jolly, A. ;
Johnson, T. J. ;
Karman, T. ;
Kleiner, I. ;
Kyuberis, A. A. ;
Loos, J. ;
Lyulin, O. M. ;
Massie, S. T. ;
Mikhailenko, S. N. ;
Moazzen-Ahmadi, N. ;
Mueller, H. S. P. ;
Naumenko, O. V. ;
Nikitin, A. V. ;
Polyansky, O. L. ;
Rey, M. ;
Rotger, M. ;
Sharpe, S. W. ;
Sung, K. ;
Starikova, E. ;
Tashkun, S. A. ;
Vander Auwera, J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 203 :3-69
[10]  
Hanson RonaldK., 2016, SPECTROSCOPY OPTICAL, V1