Optimal systems and invariant solutions for the curve shortening problem

被引:20
作者
Chou, KS [1 ]
Li, GX [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
D O I
10.4310/CAG.2002.v10.n2.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The symmetry group of the generalized curve shortening problem is determined and a corresponding optimal system is found. Group invariant solutions for the optimal system are discussed.
引用
收藏
页码:241 / 274
页数:34
相关论文
共 27 条
[1]  
ABRESCH U, 1986, J DIFFER GEOM, V23, P175
[2]  
ALTSCHULER SJ, 1991, J DIFFER GEOM, V34, P491
[3]   AXIOMS AND FUNDAMENTAL EQUATIONS OF IMAGE-PROCESSING [J].
ALVAREZ, L ;
GUICHARD, F ;
LIONS, PL ;
MOREL, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (03) :199-257
[4]  
Andrews B, 1996, J DIFFER GEOM, V43, P207
[5]   Evolving convex curves [J].
Andrews, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1998, 7 (04) :315-371
[6]  
ANGENENT S, 1991, J DIFFER GEOM, V33, P601
[8]   On the affine heat equation for non-convex curves [J].
Angenent, S ;
Sapiro, G ;
Tannenbaum, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (03) :601-634
[9]   PARABOLIC EQUATIONS FOR CURVES ON SURFACES .1. CURVES WITH P-INTEGRABLE CURVATURE [J].
ANGENENT, S .
ANNALS OF MATHEMATICS, 1990, 132 (03) :451-483
[10]  
BRAKKE KA, 1978, MOTION SURFACE MEAN