Yolk-shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption

被引:149
作者
Liu, Xiaofang [1 ]
Hao, Chengcheng [1 ]
He, Lihua [1 ,2 ]
Yang, Cheng [2 ]
Chen, Yubin [2 ]
Jiang, Chengbao [1 ]
Yu, Ronghai [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Beijing Inst Aeronaut Mat, Beijing 100095, Peoples R China
基金
中国国家自然科学基金;
关键词
yolk-shell structure; metal organic framework; sulfide; microwave absorption; broad bandwidth; ELECTROMAGNETIC-WAVE ABSORPTION; METAL-ORGANIC FRAMEWORK; EVOLUTION REACTIONS; MAGNETIC-PROPERTIES; OXYGEN REDUCTION; CARBON NANOTUBE; GRAPHENE OXIDE; PERFORMANCE; LIGHTWEIGHT; ABSORBER;
D O I
10.1007/s12274-018-2006-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A yolk-shell structured Co-C/Void/Co9S8 ternary composite composed of a Co nanoparticle-embedded porous carbon core and Co9S8 shell was synthesized by the sulfidation of a Co-based zeolitic imidazolate framework and subsequent pyrolysis. The composition and interior cavity of the Co-C/Void/Co9S8 composite could be precisely modulated by controlling the sulfidation reaction. Due to the abundant heterointerfaces, well-controlled cavity, and magnetic-dielectric synergistic effects, the Co-C/Void/Co9S8 exhibited excellent and tunable microwave-absorbing properties. The optimized Co-C/Void/Co9S8, having a loading of 25 wt.% and thickness only 2.2 mm, displayed an ultrabroad absorption bandwidth of 8.2 GHz at high frequencies. Moreover, the composite could achieve an extremely high reflection loss of -54.02 dB at low frequencies by adjusting its loading to 30 wt.%. This study provides a new insight into promising lightweight microwave-absorbing materials with ultrabroad absorption bandwidths and strong low-frequency absorption.
引用
收藏
页码:4169 / 4182
页数:14
相关论文
共 54 条
[1]   Nanoelectromagnetic of the N-doped single wall carbon nanotube in the extremely high frequency band [J].
Aissa, B. ;
Nedil, M. ;
Kroeger, J. ;
Hossain, M. I. ;
Mahmoud, K. ;
Rosei, F. .
NANOSCALE, 2017, 9 (37) :14192-14200
[2]   Bifunctional Electrocatalysts (Co9S8@NSC) Derived from a Polymer-metal Complex for the Oxygen Reduction and Oxygen Evolution Reactions [J].
Alshehri, Saad M. ;
Ahmed, Jahangeer ;
Khan, Aslam ;
Naushad, Mu ;
Ahamad, Tansir .
CHEMELECTROCHEM, 2018, 5 (02) :355-361
[3]   Cobalt Sulfide Embedded in Porous Nitrogen-doped Carbon as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions [J].
Cao, Xuecheng ;
Zheng, Xiangjun ;
Tian, Jinghua ;
Jin, Chao ;
Ke, Ke ;
Yang, Ruizhi .
ELECTROCHIMICA ACTA, 2016, 191 :776-783
[4]   MAGNETIC-PROPERTIES OF NANOPHASE COBALT PARTICLES SYNTHESIZED IN INVERSED MICELLES [J].
CHEN, JP ;
SORENSEN, CM ;
KLABUNDE, KJ ;
HADJIPANAYIS, GC .
JOURNAL OF APPLIED PHYSICS, 1994, 76 (10) :6316-6318
[5]   Co7Fe3 and Co7Fe3@SiO2 Nanospheres with Tunable Diameters for High-Performance Electromagnetic Wave Absorption [J].
Chen, Na ;
Jiang, Jian-Tang ;
Xu, Cheng-Yan ;
Yuan, Yong ;
Gong, Yuan-Xun ;
Zhen, Liang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) :21933-21941
[6]   Enhanced microwave absorption properties of flake-shaped FePCB metallic glass/graphene composites [J].
Chuai, Dan ;
Liu, Xiaofang ;
Yu, Ronghai ;
Ye, Jinrui ;
Shi, Youqiang .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2016, 89 :33-39
[7]   Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite [J].
Ding, Yi ;
Zhang, Zheng ;
Luo, Baohe ;
Liao, Qingliang ;
Liu, Shuo ;
Liu, Yichong ;
Zhang, Yue .
NANO RESEARCH, 2017, 10 (03) :980-990
[8]   Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings [J].
Ding, Yi ;
Zhang, Long ;
Liao, Qingliang ;
Zhang, Guangjie ;
Liu, Shuo ;
Zhang, Yue .
NANO RESEARCH, 2016, 9 (07) :2018-2025
[9]   Metastable Marcasite-FeS2 as a New Anode Material for Lithium Ion Batteries: CNFs-Improved Lithiation/Delithiation Reversibility and Li-Storage Properties [J].
Fan, Hong-Hong ;
Li, Huan-Huan ;
Huang, Ke-Cheng ;
Fan, Chao-Ying ;
Zhang, Xiao-Ying ;
Wu, Xing-Long ;
Zhang, Jing-Ping .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (12) :10708-10716
[10]   Synthesis of Hierarchical ZnFe2O4@SiO2@RGO Core-Shell Microspheres for Enhanced Electromagnetic Wave Absorption [J].
Feng, Jiantao ;
Hou, Yanhui ;
Wang, Yechen ;
Li, Liangchao .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (16) :14103-14111