Feedback Control Solutions for an Electromechanical Process with Rigid Body Dynamics

被引:0
|
作者
Szedlak-Stinean, Alexandra-Iulia [1 ]
Precup, Radu-Emil [1 ]
Bojan-Dragos, Claudia-Adina [1 ]
Mituletu, Ion-Comel [1 ,2 ]
机构
[1] Politehn Univ Timisoara, Dept Automat & Appl Informat, Timisoara, Romania
[2] Eftimie Murgu Univ Resita, Dept Elect & Comp Engn, Resita, Romania
来源
2018 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI) | 2018年
关键词
IMPLEMENTATION; DISTURBANCE; REJECTION; SYSTEMS; DESIGN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper presents three design methods for the position control of a mechatronics application characterized by rigid body dynamics and a discontinuously variable parameter (inertia). The techniques are useful because the control structure with state feedback does not assure reduced settling times, phase margins of 60 degrees (or smaller) and a zero steady-state control error. The Modulus Optimum method (MO-m) is applied to initially tune the parameters of the continous-time controllers and the backwards difference method is used for discretizing these parameters. A set of digital and experimental results for the position control systems using the proposed and developed control solutions validate the suggested techniques. A comparative analysis of the three proposed control structures is also given in order to highlight how the specified control system performance was achieved.
引用
收藏
页码:599 / 605
页数:7
相关论文
共 50 条
  • [1] Pose stabilization control for actuator delayed rigid body dynamics on SE(3) with predicted feedback
    Peng, Xiuhui
    Zhou, Yijia
    Sun, Zhiyong
    Yuen, Ka-Veng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (09):
  • [2] New solutions of classical problems in rigid body dynamics
    Yehia, H. M.
    Saleh, E.
    Megahid, S. F.
    MECHANICS RESEARCH COMMUNICATIONS, 2015, 69 : 40 - 44
  • [3] Existence of solutions to rigid body dynamics and the Painleve paradoxes
    Stewart, DE
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (06): : 689 - 693
  • [4] Discrete rigid body dynamics and optimal control
    Bloch, AM
    Crouch, PE
    Marsden, JE
    Ratiu, TS
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 2249 - 2254
  • [5] Discrete rigid body dynamics and optimal control
    Bloch, Anthony M.
    Crouch, Peter E.
    Marsden, Jerrold E.
    Ratiu, Tudor S.
    Proceedings of the IEEE Conference on Decision and Control, 1998, 2 : 2249 - 2254
  • [6] A unified approach to rigid body rotational dynamics and control
    Udwadia, Firdaus E.
    Schutte, Aaron D.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2138): : 395 - 414
  • [7] Canonical formalism for modelling and control of rigid body dynamics
    Gurfil, P.
    NEW TRENDS IN ASTRODYNAMICS AND APPLICATIONS, 2005, 1065 : 391 - 413
  • [8] A general framework for rigid body dynamics, stability, and control
    Hemami, H
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2002, 124 (02): : 241 - 251
  • [9] Tracking control of the n-dimensional rigid body with output feedback
    Sakamoto, N
    SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, : 1831 - 1834
  • [10] Output Feedback Control of Rigid-Body Attitude with Input Saturation
    Hu, Jinchang
    Zhang, Honghua
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 373 - 378