New Inequalities for Davis-Wielandt Radius of Hilbert Space Operators

被引:8
作者
Bhunia, Pintu [1 ]
Bhanja, Aniket [2 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
[2] Vivekananda Coll, Dept Math, Kolkata 700063, W Bengal, India
关键词
Davis-Wielandt radius; Numerical radius; Inequality; Bounded linear operator; NUMERICAL RANGE; BOUNDS; SHELL;
D O I
10.1007/s40840-021-01126-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a bounded linear operator on a complex Hilbert space and dw(T) denote the Davis-Wielandt radius of the operator T. We prove that dw(2) (T) <= min(0 <=alpha <= 1) parallel to alpha|T|(2) + (1 - alpha)|T *|(2) + |T|(4) and dw(2) (T) <= min(0 <=alpha <= 1) parallel to alpha|T|(2) + (1 - alpha)|T *|(2) + |T*|(4), where |T| = root T*T, |T *| = root TT*. We also develop several other bounds for the Davis-Wielandt radius and prove that the bounds obtained here are better than the existing ones.
引用
收藏
页码:3523 / 3539
页数:17
相关论文
共 19 条
[1]  
Alomari MW, 2020, ARXIV200800758MATHFA
[2]   BOUNDS OF NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS USING t-ALUTHGE TRANSFORM [J].
Bag, Santanu ;
Bhunia, Pintu ;
Paul, Kallol .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03) :991-1004
[3]  
Bhunia P., ARXIV20061532
[4]   Bounds for the Davis-Wielandt radius of bounded linear operators [J].
Bhunia, Pintu ;
Bhanja, Aniket ;
Bag, Santanu ;
Paul, Kallol .
ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (01)
[5]  
Buzano M. L., 1971, REND SEM MAT U POLIT, V31, P405
[6]  
DAVIS C, 1968, ACTA SCI MATH, V29, P69
[7]   Davis-Wielandt shells of semi-Hilbertian space operators and its applications [J].
Feki, Kais ;
Mahmoud, Sid Ahmed Ould Ahmed .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (03) :1281-1304
[8]  
Fujii M., 2015, SCI MATH JPN, V78, P229
[9]  
Gustafson K.E., 1996, Numerical Range
[10]  
Halmos PR., 1982, HILBERT SPACE PROBLE, V2, DOI [10.1007/978-1-4684-9330-6, DOI 10.1007/978-1-4684-9330-6]