Homology of precrossed modules

被引:9
作者
Arias, D [1 ]
Ladra, M [1 ]
R-Grandjeán, A [1 ]
机构
[1] Univ Santiago, Dept Algebra, E-15782 Santiago, Spain
关键词
D O I
10.1215/ijm/1258130982
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the category of precrossed modules is an algebraic category, and we develop a cotriple (co)homology theory for precrossed modules which generalizes the Eilenberg-MacLane theory of (co)homology groups. We study the relationship of this theory with the (co)homology of crossed modules.
引用
收藏
页码:739 / 754
页数:16
相关论文
共 13 条
[1]  
BARR M, 1969, LECT NOTES MATH, V80, P245
[2]  
BARR M, 1985, GRUND MATH WISS, P278
[3]  
Baues H.-J., 1991, Combinatorial Homotopy and 4-Dimensional Complexes
[4]   VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES [J].
BROWN, R ;
LODAY, JL .
TOPOLOGY, 1987, 26 (03) :311-335
[5]   (Co)homology of crossed modules [J].
Carrasco, P ;
Cegarra, AM ;
Grandjeán, AR .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 168 (2-3) :147-176
[6]  
CEGARRA AM, 1980, THESIS U SANTIAGO CO
[7]   SOME HOMOLOGICAL PROPERTIES OF PRE-CROSSED MODULES [J].
CONDUCHE, D ;
ELLIS, GJ .
JOURNAL OF ALGEBRA, 1989, 123 (02) :327-335
[8]  
GILBERT ND, 2000, HOMOL HOMOTOPY APPL, V2, P41
[9]   COMMUTATOR NILPOTENCY AND SOLVABILITY IN CATEGORIES [J].
HUQ, SA .
QUARTERLY JOURNAL OF MATHEMATICS, 1968, 19 (76) :363-&
[10]  
Inassaridze N., 2000, HOMOL HOMOTOPY APPL, V2, P105, DOI [10.4310/HHA.2000.v2.n1.a7, DOI 10.4310/HHA.2000.V2.N1.A7]