Biological network-driven gene selection identifies a stromal immune module as a key determinant of triple-negative breast carcinoma prognosis

被引:27
作者
Bonsang-Kitzis, H. [1 ,2 ,3 ]
Sadacca, B. [1 ,2 ,4 ]
Hamy-Petit, A. S. [1 ,2 ]
Moarii, M. [5 ,6 ]
Pinheiro, A. [1 ,2 ]
Laurent, C. [1 ,2 ]
Reyal, F. [1 ,2 ,3 ]
机构
[1] Inst Curie, Residual Tumor & Response Treatment Lab, RT2Lab, Translat Res Dept, Paris, France
[2] Inst Curie, INSERM, Immun & Canc U932, Paris, France
[3] Inst Curie, Dept Surg, Paris, France
[4] Univ Evry Val dEssonne, Lab Math & Modelisat Evry, UMR CNRS 8071, ENSIIE,USC INRA, Evry, France
[5] PSL Res Univ, Mines Paristech, CBIO Ctr Computat Biol, Fontainebleau, France
[6] Inst Curie, INSERM, U900, Paris, France
关键词
immune signature; molecular subtypes; prognosis; triple-negative breast cancer; TUMOR-INFILTRATING LYMPHOCYTES; MATRIX METALLOPROTEINASES; NEOADJUVANT CHEMOTHERAPY; MESENCHYMAL TRANSITION; DRUG-SENSITIVITY; CANCER; EXPRESSION; INHIBITORS; STABILITY; SUBTYPES;
D O I
10.1080/2162402X.2015.1061176
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Triple-negative breast cancer (TNBC) is a heterogeneous group of aggressive breast cancers for which no targeted treatment is available. Robust tools for TNBC classification are required, to improve the prediction of prognosis and to develop novel therapeutic interventions. We analyzed 3,247 primary human breast cancer samples from 21 publicly available datasets, using a five-step method: (1) selection of TNBC samples by bimodal filtering on ER-HER2 and PR, (2) normalization of the selected TNBC samples, (3) selection of the most variant genes, (4) identification of gene clusters and biological gene selection within gene clusters on the basis of String (c) database connections and gene-expression correlations, (5) summarization of each gene cluster in a metagene. We then assessed the ability of these metagenes to predict prognosis, on an external public dataset (METABRIC). Our analysis of gene expression (GE) in 557 TNBCs from 21 public datasets identified a six-metagene signature (167 genes) in which the metagenes were enriched in different gene ontologies. The gene clusters were named as follows: Immunity1, Immunity2, Proliferation/DNA damage, AR-like, Matrix/Invasion1 and Matrix2 clusters respectively. This signature was particularly robust for the identification of TNBC subtypes across many datasets (n = 1,125 samples), despite technology differences (Affymetrix (c) A, Plus2 and Illumina (c)). Weak Immunity two metagene expression was associated with a poor prognosis (disease-specific survival; HR = 2.68 [1.59-4.52], p = 0.0002). The six-metagene signature (167 genes) was validated over 1,125 TNBC samples. The Immunity two metagene had strong prognostic value. These findings open up interesting possibilities for the development of new therapeutic interventions.
引用
收藏
页数:14
相关论文
共 68 条
[1]   Prediction of breast cancer prognosis using gene set statistics provides signature stability and biological context [J].
Abraham, Gad ;
Kowalczyk, Adam ;
Loi, Sherene ;
Haviv, Izhak ;
Zobel, Justin .
BMC BIOINFORMATICS, 2010, 11
[2]   A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data [J].
Barbosa-Morais, Nuno L. ;
Dunning, Mark J. ;
Samarajiwa, Shamith A. ;
Darot, Jeremy F. J. ;
Ritchie, Matthew E. ;
Lynch, Andy G. ;
Tavare, Simon .
NUCLEIC ACIDS RESEARCH, 2010, 38 (03) :e17.1-e17.13
[3]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[4]   Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers [J].
Bertucci, Francois ;
Finetti, Pascal ;
Cervera, Nathalie ;
Charafe-Jauffret, Emmanuelle ;
Mamessier, Emilie ;
Adelaide, Jose ;
Debono, Stephane ;
Houvenaeghel, Gilles ;
Maraninchi, Dominique ;
Viens, Patrice ;
Charpin, Colette ;
Jacquemier, Jocelyne ;
Birnbaum, Daniel .
CANCER RESEARCH, 2006, 66 (09) :4636-4644
[5]   Molecular Anatomy of Breast Cancer Stroma and Its Prognostic Value in Estrogen Receptor-Positive and -Negative Cancers [J].
Bianchini, Giampaolo ;
Qi, Yuan ;
Alvarez, Ricardo H. ;
Iwamoto, Takayuki ;
Coutant, Charles ;
Ibrahim, Nuhad K. ;
Valero, Vicente ;
Cristofanilli, Massimo ;
Green, Marjorie C. ;
Radvanyi, Laszlo ;
Hatzis, Christos ;
Hortobagyi, Gabriel N. ;
Andre, Fabrice ;
Gianni, Luca ;
Symmans, W. Fraser ;
Pusztai, Lajos .
JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (28) :4316-4323
[6]   Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-Negative Breast Cancer [J].
Burstein, Matthew D. ;
Tsimelzon, Anna ;
Poage, Graham M. ;
Coyington, Kyle R. ;
Contreras, Alejandro ;
Fuqua, Suzanne A. W. ;
Sayage, Michelle I. ;
Osborne, C. Kent ;
Hilsenbeck, Susan G. ;
Chang, Jenny C. ;
Mills, Gordon B. ;
Lau, Ching C. ;
Brown, Powel H. .
CLINICAL CANCER RESEARCH, 2015, 21 (07) :1688-1698
[7]   TNBCtype: A Subtyping Tool for Triple-Negative Breast Cancer [J].
Chen, Xi ;
Li, Jiang ;
Gray, William ;
Lehmann, Brian ;
Bauer, Joshua ;
Shyr, Yu ;
Pietenpol, Jennifer .
CANCER INFORMATICS, 2012, 11 :147-156
[8]   Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis [J].
Cortazar, Patricia ;
Zhang, Lijun ;
Untch, Michael ;
Mehta, Keyur ;
Costantino, Joseph P. ;
Wolmark, Norman ;
Bonnefoi, Herve ;
Cameron, David ;
Gianni, Luca ;
Valagussa, Pinuccia ;
Swain, Sandra M. ;
Prowell, Tatiana ;
Loibl, Sibylle ;
Wickerham, D. Lawrence ;
Bogaerts, Jan ;
Baselga, Jose ;
Perou, Charles ;
Blumenthal, Gideon ;
Blohmer, Jens ;
Mamounas, Eleftherios P. ;
Bergh, Jonas ;
Semiglazov, Vladimir ;
Justice, Robert ;
Eidtmann, Holger ;
Paik, Soonmyung ;
Piccart, Martine ;
Sridhara, Rajeshwari ;
Fasching, Peter A. ;
Slaets, Leen ;
Tang, Shenghui ;
Gerber, Bernd ;
Geyer, Charles E., Jr. ;
Pazdur, Richard ;
Ditsch, Nina ;
Rastogi, Priya ;
Eiermann, Wolfgang ;
von Minckwitz, Gunter .
LANCET, 2014, 384 (9938) :164-172
[9]   Prognostic gene signatures for patient stratification in breast cancer - accuracy, stability and interpretability of gene selection approaches using prior knowledge on protein-protein interactions [J].
Cun, Yupeng ;
Froehlich, Holger .
BMC BIOINFORMATICS, 2012, 13
[10]   The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups [J].
Curtis, Christina ;
Shah, Sohrab P. ;
Chin, Suet-Feung ;
Turashvili, Gulisa ;
Rueda, Oscar M. ;
Dunning, Mark J. ;
Speed, Doug ;
Lynch, Andy G. ;
Samarajiwa, Shamith ;
Yuan, Yinyin ;
Graef, Stefan ;
Ha, Gavin ;
Haffari, Gholamreza ;
Bashashati, Ali ;
Russell, Roslin ;
McKinney, Steven ;
Langerod, Anita ;
Green, Andrew ;
Provenzano, Elena ;
Wishart, Gordon ;
Pinder, Sarah ;
Watson, Peter ;
Markowetz, Florian ;
Murphy, Leigh ;
Ellis, Ian ;
Purushotham, Arnie ;
Borresen-Dale, Anne-Lise ;
Brenton, James D. ;
Tavare, Simon ;
Caldas, Carlos ;
Aparicio, Samuel .
NATURE, 2012, 486 (7403) :346-352