Interpretable machine-learning identification of the crossover from subradiance to superradiance in an atomic array

被引:1
作者
Lin, C. Y. [1 ,2 ]
Jen, H. H. [1 ,3 ]
机构
[1] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[3] Natl Ctr Theoret Sci, Phys Div, Taipei 10617, Taiwan
关键词
superradiance; subradiance; interpretable machine learning; atomic array; RADIATION; EMISSION; PHOTON;
D O I
10.1088/1361-6455/ac6f33
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Light-matter interacting quantum systems manifest strong correlations that lead to distinct cooperative spontaneous emissions of subradiance or superradiance. To demonstrate the essence of finite-range correlations in such systems, we consider an atomic array under the resonant dipole-dipole interactions (RDDI) and apply an interpretable machine learning (ML) with the integrated gradients to identify the crossover between the subradiant and superradiant sectors. The machine shows that the next nearest-neighbor (NN) couplings in RDDI play as much as the roles of NN ones in determining the whole eigenspectrum within the training sets. Our results present the advantage of ML approach with explainable ability to reveal the underlying mechanism of correlations in quantum optical systems, which can be potentially applied to investigate many other strongly interacting quantum many-body systems.
引用
收藏
页数:11
相关论文
共 45 条
  • [1] Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)
    Adadi, Amina
    Berrada, Mohammed
    [J]. IEEE ACCESS, 2018, 6 : 52138 - 52160
  • [2] Maximum Refractive Index of an Atomic Medium
    Andreoli, Francesco
    Gullans, Michael J.
    High, Alexander A.
    Browaeys, Antoine
    Chang, Darrick E.
    [J]. PHYSICAL REVIEW X, 2021, 11 (01)
  • [3] Exponential Improvement in Photon Storage Fidelities Using Subradiance and "Selective Radiance" in Atomic Arrays
    Asenjo-Garcia, A.
    Moreno-Cardoner, M.
    Albrecht, A.
    Kimble, H. J.
    Chang, D. E.
    [J]. PHYSICAL REVIEW X, 2017, 7 (03):
  • [4] Cooperative eigenmodes and scattering in one-dimensional atomic arrays
    Bettles, Robert J.
    Gardiner, Simon A.
    Adams, Charles S.
    [J]. PHYSICAL REVIEW A, 2016, 94 (04)
  • [5] Directional Dicke Subradiance with Nonclassical and Classical Light Sources
    Bhatti, Daniel
    Schneider, Raimund
    Oppel, Steffen
    von Zanthier, Joachim
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (11)
  • [6] Classifying snapshots of the doped Hubbard model with machine learning
    Bohrdt, Annabelle
    Chiu, Christie S.
    Jig, Geoffrey
    Xu, Muqing
    Greif, Daniel
    Greiner, Markus
    Demler, Eugene
    Grusdt, Fabian
    Knap, Michael
    [J]. NATURE PHYSICS, 2019, 15 (09) : 921 - 924
  • [7] Collective atomic scattering and motional effects in a dense coherent medium
    Bromley, S. L.
    Zhu, B.
    Bishof, M.
    Zhang, X.
    Bothwell, T.
    Schachenmayer, J.
    Nicholson, T. L.
    Kaiser, R.
    Yelin, S. F.
    Lukin, M. D.
    Rey, A. M.
    Ye, J.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [8] Machine learning and the physical sciences
    Carleo, Giuseppe
    Cirac, Ignacio
    Cranmer, Kyle
    Daudet, Laurent
    Schuld, Maria
    Tishby, Naftali
    Vogt-Maranto, Leslie
    Zdeborova, Lenka
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
  • [9] Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/NPHYS4035, 10.1038/nphys4035]
  • [10] Absorption imaging of a quasi-two-dimensional gas: a multiple scattering analysis
    Chomaz, L.
    Corman, L.
    Yefsah, T.
    Desbuquois, R.
    Dalibard, J.
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14