Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures

被引:158
作者
Zhao, Yuncheng [1 ]
Zhang, Yaxin [1 ]
Shi, Qiwu [2 ]
Liang, Shixiong [3 ]
Huang, Wanxia [2 ]
Kou, Wei [1 ]
Yang, Ziqiang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Terahertz Sci & Technol Res Ctr, Chengdu 610054, Sichuan, Peoples R China
[2] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Sichuan, Peoples R China
[3] Hebei Semicond Res Inst, Natl Key Lab Applicat Specif Integrated Circuit, Shijiazhuang 050051, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
insulator-metal phase transition; coupling mode; phase shift; terahertz; vanadium dioxide; TRANSITION; METAMATERIALS;
D O I
10.1021/acsphotonics.8b00276
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Utilizing terahertz (THz) waves to transmit data for communication and imaging places high demands on phase modulation. However, until now, it is difficult to realize a more than 100 phase shift in the transmission mode with one-layer structure. In this paper, a ring-dumbbell composite resonator nested with VO2 nanostructures is proposed to achieve the large phase shift. It is found that in this structure a hybrid mode with an enhanced resonant intensity, which is coupled by the L-C resonance and dipole resonance has been observed. Applying the photoinduced phase transition characteristics of VO2, the resonant intensity of the mode can be dynamically controlled, which leads to a large phase shift in the incident THz wave. The dynamic experimental results show that controlling the power of the external laser can achieve a phase shift of up to 138 degrees near 0.6 THz using this one-layer VO2 nested composite structure. Moreover, within a 55 GHz (575-630 GHz) bandwidth, the phase shift exceeds 130 degrees. This attractive phase shift modulation may provide prospective applications in THz imaging, communications, and so on.
引用
收藏
页码:3040 / 3050
页数:21
相关论文
共 48 条
[1]  
[Anonymous], 2012, Classical electrodynamics
[2]   Role of Defects in the Phase Transition of VO2 Nanoparticles Probed by Plasmon Resonance Spectroscopy [J].
Appavoo, Kannatassen ;
Lei, Dang Yuan ;
Sonnefraud, Yannick ;
Wang, Bin ;
Pantelides, Sokrates T. ;
Maier, Stefan A. ;
Haglund, Richard F., Jr. .
NANO LETTERS, 2012, 12 (02) :780-786
[3]   Geometrical tradeoffs in graphene-based deeply-scaled electrically reconfigurable metasurfaces [J].
Arezoomandan, Sara ;
Sensale-Rodriguez, Berardi .
SCIENTIFIC REPORTS, 2015, 5
[4]   4D visualization of transitional structures in phase transformations by electron diffraction [J].
Baum, Peter ;
Yang, Ding-Shyue ;
Zewail, Ahmed H. .
SCIENCE, 2007, 318 (5851) :788-792
[5]   Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition -: art. no. 237401 [J].
Cavalleri, A ;
Tóth, C ;
Siders, CW ;
Squier, JA ;
Ráksi, F ;
Forget, P ;
Kieffer, JC .
PHYSICAL REVIEW LETTERS, 2001, 87 (23) :237401-1
[6]   Experimental demonstration of frequency-agile terahertz metamaterials [J].
Chen, Hou-Tong ;
O'Hara, John F. ;
Azad, Abul K. ;
Taylor, Antoinette J. ;
Averitt, Richard D. ;
Shrekenhamer, David B. ;
Padilla, Willie J. .
NATURE PHOTONICS, 2008, 2 (05) :295-298
[7]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[8]   A metamaterial solid-state terahertz phase modulator [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Cich, Michael J. ;
Azad, Abul K. ;
Averitt, Richard D. ;
Taylor, Antoinette J. .
NATURE PHOTONICS, 2009, 3 (03) :148-151
[9]   Current oscillations in vanadium dioxide: Evidence for electrically triggered percolation avalanches [J].
Driscoll, Tom ;
Quinn, Jack ;
Di Ventra, Massimiliano ;
Basov, Dimitri N. ;
Seo, Giwan ;
Lee, Yong-Wook ;
Kim, Hyun-Tak ;
Smith, David R. .
PHYSICAL REVIEW B, 2012, 86 (09)
[10]   THz imaging and sensing for security applications - explosives, weapons and drugs [J].
Federici, JF ;
Schulkin, B ;
Huang, F ;
Gary, D ;
Barat, R ;
Oliveira, F ;
Zimdars, D .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (07) :S266-S280