Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model

被引:97
作者
Cao, CS
Titi, ES
机构
[1] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[4] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
关键词
D O I
10.1002/cpa.10056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a three-dimensional planetary geostrophic viscous model of the gyre-scale mid-latitude ocean. We show the global existence and uniqueness of the weak and strong solutions to this model. Moreover, we establish the existence of a finite-dimensional global attractor to this dissipative evolution system. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:198 / 233
页数:36
相关论文
共 46 条
[1]  
Adams R., 1975, Pure and Applied Mathematics, V65, pxviii+268
[2]   EXISTENCE OF SOLUTIONS TO THE STOMMEL-CHARNEY MODEL OF THE GULF-STREAM [J].
BARCILON, V ;
CONSTANTIN, P ;
TITI, ES .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (06) :1355-1364
[3]  
CAO C, UNPUB HYPER DIFFUSIO
[5]  
Chavel I., 1984, PURE APPL MATH, V115
[6]   Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems [J].
Cockburn, B ;
Jones, DA ;
Titi, ES .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :1073-1087
[7]   GLOBAL LYAPUNOV EXPONENTS, KAPLAN-YORKE FORMULAS AND THE DIMENSION OF THE ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FOIAS, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (01) :1-27
[8]   SINGULAR FRONT FORMATION IN A MODEL FOR QUASI-GEOSTROPHIC FLOW [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, EG .
PHYSICS OF FLUIDS, 1994, 6 (01) :9-11
[9]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[10]  
Constantin P., 1988, CHICAGO LECT MATH