Low-Temperature Plasma-Assisted Atomic-Layer-Deposited SnO2 as an Electron Transport Layer in Planar Perovskite Solar Cells

被引:109
|
作者
Kuang, Yinghuan [1 ,5 ]
Zardetto, Valerio [2 ,3 ]
van Gils, Roderick [1 ]
Karwal, Saurabh [1 ]
Koushik, Dibyashree [1 ]
Verheijen, Marcel A. [1 ,4 ]
Black, Lachlan E. [1 ]
Weijtens, Christ [1 ]
Veenstra, Sjoerd [3 ]
Andriessen, Ronn [2 ,3 ]
Kessels, Wilhelmus M. M. [1 ,3 ]
Creatore, Mariadriana [1 ,3 ]
机构
[1] Eindhoven Univ Technol TU E, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] TNO, High Tech Campus 21, NL-5656 AE Eindhoven, Netherlands
[3] Solliance, High Tech Campus 21, NL-5656 AE Eindhoven, Netherlands
[4] Philips Innovat Labs, High Tech Campus 11, NL-5656 AE Eindhoven, Netherlands
[5] IMEC, Thin Film Photovolta Grp, EnergyVille 2,Thor Pk 8320, B-3600 Genk, Belgium
关键词
tin oxide; atomic layer deposition; perovskite solar cells; stability; interface; inorganic electron transport layer; TIN OXIDE; THIN-FILMS; PHOTOVOLTAIC PERFORMANCE; CH3NH3PBI3; PEROVSKITE; HALIDE PEROVSKITES; THERMAL-STABILITY; EFFICIENT; DEGRADATION; SPECTROSCOPY; PASSIVATION;
D O I
10.1021/acsami.8b09515
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we present an extensive characterization of plasma-assisted atomic-layer-deposited SnO2 layers, with the aim of identifying key material properties of SnO2 to serve as an efficient electron transport layer in perovskite solar cells (PSCs). Electrically resistive SnO2 films are fabricated at 50 degrees C, while a SnO2 film with a low electrical resistivity of 1.8 x 10(-3) Omega cm, a carrier density of 9.6 x 10(19) cm(-3), and a high mobility of 36.0 cm(2)/V s is deposited at 200 degrees C. Ultraviolet photoelectron spectroscopy indicates a conduction band offset of similar to 0.69 eV at the 50 degrees C SnO2/Cs-0.05(MA(0.17)FA(0.83))(0.95)Pb-(I2.7Br0.3) interface. In contrast, a negligible conduction band offset is found between the 200 degrees C SnO2 and the perovskite. Surprisingly, comparable initial power conversion efficiencies (PCEs) of 17.5 and 17.8% are demonstrated for the champion cells using 15 nm thick SnO2 deposited at 50 and 200 degrees C, respectively. The latter gains in fill factor but loses in open-circuit voltage. Markedly, PSCs using the 200 degrees C compact SnO2 retain their initial performance at the maximum power point over 16 h under continuous one-sun illumination in inert atmosphere. Instead, the cell with the 50 degrees C SnO2 shows a decrease in PCE of approximately 50%.
引用
收藏
页码:30367 / 30378
页数:12
相关论文
共 50 条
  • [31] Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%
    Jeong, Seonghwa
    Seo, Seongrok
    Park, Hyoungmin
    Shin, Hyunjung
    CHEMICAL COMMUNICATIONS, 2019, 55 (17) : 2433 - 2436
  • [32] Recent Advances of Doped SnO2 as Electron Transport Layer for High-Performance Perovskite Solar Cells
    Huy, Vo Pham Hoang
    Nguyen, Thi My Huyen
    Bark, Chung Wung
    MATERIALS, 2023, 16 (18)
  • [33] Bilayer SnO2 as Electron Transport Layer for Highly Efficient Perovskite Solar Cells
    Yi, Haimang
    Wang, Dian
    Mahmud, Md Arafat
    Haque, Faiazul
    Upama, Mushfika Baishakhi
    Xu, Cheng
    Duan, Leiping
    Uddin, Ashraf
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (11): : 6027 - 6039
  • [34] Efficient Perovskite Solar Cells by using combustion SnO2 A as electron Transporting Layer in low temperature
    Zheng, Ding
    Qin, Ruiheng
    Wu, Mengge
    Yu, Junsheng
    9TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTOELECTRONIC MATERIALS AND DEVICES FOR SENSING AND IMAGING, 2019, 10843
  • [35] Numerical Simulation of Planar Heterojunction Perovskite Solar Cells Based on SnO2 Electron Transport Layer
    Zhao, Peng
    Lin, Zhenhua
    Wang, Jiaping
    Yue, Man
    Su, Jie
    Zhang, Jincheng
    Chang, Jingjing
    Hao, Yue
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (06) : 4504 - 4512
  • [36] Low-Temperature-Processed Zr/F Co-Doped SnO2 Electron Transport Layer for High-Efficiency Planar Perovskite Solar Cells
    Tian, Jiawu
    Zhang, Jianjun
    Li, Xiaohe
    Cheng, Bei
    Yu, Jiaguo
    Ho, Wingkei
    SOLAR RRL, 2020, 4 (06)
  • [37] 17.78% efficient low-temperature carbon-based planar perovskite solar cells using Zn-doped SnO2 electron transport layer
    Ye, Haibo
    Liu, Zhiyong
    Liu, Xingyue
    Sun, Bo
    Tan, Xianhua
    Tu, Yuxue
    Shi, Tielin
    Tang, Zirong
    Liao, Guanglan
    APPLIED SURFACE SCIENCE, 2019, 478 : 417 - 425
  • [38] Progress of SnO2 as Electron Transport Layer for Perovskite Solar Cells
    Liu Z.
    Chen J.
    Peng Z.
    Chen J.
    Chen, Jianlin (cjlinhunu@csust.edu.cn), 1600, Cailiao Daobaoshe/ Materials Review (34): : 21072 - 21080and21098
  • [39] Modification of SnO2 electron transport Layer: Brilliant strategies to make perovskite solar cells stronger
    Huang, Shumin
    Li, Peiyu
    Wang, Jing
    Huang, Jacob Chih-Ching
    Xue, Qifan
    Fu, Nianqing
    CHEMICAL ENGINEERING JOURNAL, 2022, 439
  • [40] Poly(acrylic acid)-Modified SnO2 Electron Transport Layer for Perovskite Solar Cells
    Wang, Yanqing
    Wu, Yu
    Li, Mengzhu
    Wang, Zhaozhao
    Zhang, Weizhi
    Shi, Chengwu
    Cui, Peng
    CHEMISTRYSELECT, 2023, 8 (48):