Low-Temperature Plasma-Assisted Atomic-Layer-Deposited SnO2 as an Electron Transport Layer in Planar Perovskite Solar Cells

被引:108
|
作者
Kuang, Yinghuan [1 ,5 ]
Zardetto, Valerio [2 ,3 ]
van Gils, Roderick [1 ]
Karwal, Saurabh [1 ]
Koushik, Dibyashree [1 ]
Verheijen, Marcel A. [1 ,4 ]
Black, Lachlan E. [1 ]
Weijtens, Christ [1 ]
Veenstra, Sjoerd [3 ]
Andriessen, Ronn [2 ,3 ]
Kessels, Wilhelmus M. M. [1 ,3 ]
Creatore, Mariadriana [1 ,3 ]
机构
[1] Eindhoven Univ Technol TU E, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] TNO, High Tech Campus 21, NL-5656 AE Eindhoven, Netherlands
[3] Solliance, High Tech Campus 21, NL-5656 AE Eindhoven, Netherlands
[4] Philips Innovat Labs, High Tech Campus 11, NL-5656 AE Eindhoven, Netherlands
[5] IMEC, Thin Film Photovolta Grp, EnergyVille 2,Thor Pk 8320, B-3600 Genk, Belgium
关键词
tin oxide; atomic layer deposition; perovskite solar cells; stability; interface; inorganic electron transport layer; TIN OXIDE; THIN-FILMS; PHOTOVOLTAIC PERFORMANCE; CH3NH3PBI3; PEROVSKITE; HALIDE PEROVSKITES; THERMAL-STABILITY; EFFICIENT; DEGRADATION; SPECTROSCOPY; PASSIVATION;
D O I
10.1021/acsami.8b09515
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we present an extensive characterization of plasma-assisted atomic-layer-deposited SnO2 layers, with the aim of identifying key material properties of SnO2 to serve as an efficient electron transport layer in perovskite solar cells (PSCs). Electrically resistive SnO2 films are fabricated at 50 degrees C, while a SnO2 film with a low electrical resistivity of 1.8 x 10(-3) Omega cm, a carrier density of 9.6 x 10(19) cm(-3), and a high mobility of 36.0 cm(2)/V s is deposited at 200 degrees C. Ultraviolet photoelectron spectroscopy indicates a conduction band offset of similar to 0.69 eV at the 50 degrees C SnO2/Cs-0.05(MA(0.17)FA(0.83))(0.95)Pb-(I2.7Br0.3) interface. In contrast, a negligible conduction band offset is found between the 200 degrees C SnO2 and the perovskite. Surprisingly, comparable initial power conversion efficiencies (PCEs) of 17.5 and 17.8% are demonstrated for the champion cells using 15 nm thick SnO2 deposited at 50 and 200 degrees C, respectively. The latter gains in fill factor but loses in open-circuit voltage. Markedly, PSCs using the 200 degrees C compact SnO2 retain their initial performance at the maximum power point over 16 h under continuous one-sun illumination in inert atmosphere. Instead, the cell with the 50 degrees C SnO2 shows a decrease in PCE of approximately 50%.
引用
收藏
页码:30367 / 30378
页数:12
相关论文
共 50 条
  • [1] Low-temperature sintered SnO2 electron transport layer for efficient planar perovskite solar cells
    Yuqian Yang
    Jihuai Wu
    Panfeng Guo
    Xuping Liu
    Qiyao Guo
    Quanzhen Liu
    Hui Luo
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 13138 - 13147
  • [2] Low-temperature sintered SnO2 electron transport layer for efficient planar perovskite solar cells
    Yang, Yuqian
    Wu, Jihuai
    Guo, Panfeng
    Liu, Xuping
    Guo, Qiyao
    Liu, Quanzhen
    Luo, Hui
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (15) : 13138 - 13147
  • [3] Plasma-enhanced atomic-layer-deposited gallium nitride as an electron transport layer for planar perovskite solar cells
    Wei, Huiyun
    Wu, Jionghua
    Qiu, Peng
    Liu, Sanjie
    He, Yingfeng
    Peng, Mingzeng
    Li, Dongmei
    Meng, Qingbo
    Zaera, Francisco
    Zheng, Xinhe
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (44) : 25347 - 25354
  • [4] Low-temperature solution-processed SnO2 electron transport layer modified by oxygen plasma for planar perovskite solar cells
    Muthukrishnan, Akshaiya Padmalatha
    Lee, Junyeoung
    Kim, Jongbok
    Kim, Chang Su
    Jo, Sungjin
    RSC ADVANCES, 2022, 12 (08) : 4883 - 4890
  • [5] Ni-Doped SnO2 as an Electron Transport Layer by a Low-Temperature Process in Planar Perovskite Solar Cells
    Quy, Hoang V.
    Bark, Chung W.
    ACS OMEGA, 2022, 7 (26): : 22256 - 22262
  • [6] Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier
    Chen, Dazheng
    Su, Aixue
    Li, Xueyi
    Pang, Shangzheng
    Zhu, Weidong
    Xi, He
    Chang, Jingjing
    Zhang, Jincheng
    Zhang, Chunfu
    Hao, Yue
    SOLAR ENERGY, 2019, 188 : 239 - 246
  • [7] Origins of Efficient Perovskite Solar Cells with Low-Temperature Processed SnO2 Electron Transport Layer
    Yun, Alan Jiwan
    Kim, Jinhyun
    Hwang, Taehyun
    Park, Byungwoo
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) : 3554 - 3560
  • [8] A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells
    Li, Nan
    Yan, Jin
    Ai, Yuqian
    Jiang, Ershuai
    Lin, Liujin
    Shou, Chunhui
    Yan, Baojie
    Sheng, Jiang
    Ye, Jichun
    SCIENCE CHINA-MATERIALS, 2020, 63 (02) : 207 - 215
  • [9] Dip coated SnO2 film as electron transport layer for low temperature processed planar perovskite solar cells
    Ashina, A.
    Battula, Ramya Krishna
    Ramasamy, Easwaramoorthi
    Chundi, Narendra
    Sakthivel, S.
    Veerappan, Ganapathy
    APPLIED SURFACE SCIENCE ADVANCES, 2021, 4
  • [10] Highly efficient flexible perovskite solar cells with vacuum-assisted low-temperature annealed SnO2 electron transport layer
    Li, Xiaoguo
    Shi, Zejiao
    Behrouznejad, Fatemeh
    Hatamvand, Mohammad
    Zhang, Xin
    Wang, Yaxin
    Liu, Fengcai
    Wang, Haoliang
    Liu, Kai
    Dong, Hongliang
    Mudasar, Farhan
    Wang, Jiao
    Yu, Anran
    Zhan, Yiqiang
    JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 1 - 7