We present a numerical approximation method for linear elliptic diffusion-reaction problems with possibly discontinuous Dirichlet boundary conditions. The solution of such problems can be represented as a linear combination of explicitly known singular functions as well as of an H-2-regular part. The latter part is expressed in terms of an elliptic problem with regularized Dirichlet boundary conditions, and can be approximated by means of a Nitsche finite element approach. The discrete solution of the original problem is then defined by adding back the singular part of the exact solution to the Nitsche approximation. In this way, the discrete solution can be shown to converge of second order in the L-2-norm with respect to the mesh size.
机构:
Osaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
Osaka City Univ, Adv Math Inst, Sumiyoshi Ku, Osaka 5588585, JapanOsaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
机构:
Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R ChinaWenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
Li, Yuan
Li, Kai-tai
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R ChinaWenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
机构:
Cent South Univ, Powder Met Res Inst, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Powder Met Res Inst, Changsha 410083, Hunan, Peoples R China
Fu, Taibai
Du, Changfa
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Powder Met Res Inst, Changsha 410083, Hunan, Peoples R China
Du, Changfa
Xu, Yufeng
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R ChinaCent South Univ, Powder Met Res Inst, Changsha 410083, Hunan, Peoples R China
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
Indian Inst Sci, Bangalore 560012, Karnataka, IndiaLouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Brenner, Susanne C.
Sung, Li-yeng
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA