Analysis of a Galerkin finite element method on a Bakhvalov-Shishkin mesh for a linear convection-diffusion problem

被引:55
作者
Linss, T [1 ]
机构
[1] Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany
关键词
D O I
10.1093/imanum/20.4.621
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Galerkin finite element method that uses piecewise bilinears on a modified Shishkin mesh for a model singularly perturbed convection-diffusion problem on the unit square. The method is shown to be convergent, uniformly in the perturbation parameter epsilon, of order N-1 in a global energy norm, provided only that epsilon less than or equal to N-1, where O(N-2) mesh points are used. Thus on the new mesh the method yields more accurate results than on Shishkin's original piecewise uniform mesh, where it is convergent of order N-1 In N. Numerical experiments support our theoretical results.
引用
收藏
页码:621 / 632
页数:12
相关论文
共 20 条
[1]   ANISOTROPIC INTERPOLATION WITH APPLICATIONS TO THE FINITE-ELEMENT METHOD [J].
APEL, T ;
DOBROWOLSKI, M .
COMPUTING, 1992, 47 (3-4) :277-293
[2]  
BAKHVALOV NS, 1969, USSR COMP MATH MATH+, V9, P841
[3]  
Dobrowolski M., 1997, Zeitschrift fur Analysis und ihre Anwendungen, V16, P1001, DOI 10.4171/ZAA/801
[4]   A hybrid difference scheme on a Shishkin mesh for linear convection-diffusion problems [J].
Linss, T ;
Stynes, M .
APPLIED NUMERICAL MATHEMATICS, 1999, 31 (03) :255-270
[5]   An upwind difference scheme on a novel Shishkin-type mesh for a linear convection-diffusion problem [J].
Linss, T .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 110 (01) :93-104
[6]  
LINSS T, 2000, IN PRESS NUMER METHO
[7]  
LINSS T, 2000, IN PRESS NUMER MATH
[8]  
LINSS T, 2000, IN PRESS J MATH ANAL
[9]  
Madden N, 1997, INT J NUMER METH ENG, V40, P565, DOI 10.1002/(SICI)1097-0207(19970215)40:3<565::AID-NME80>3.0.CO
[10]  
2-7