Fuzzy Combination Rule of Multiple Classifiers System Based on Yager Triangular Norm

被引:1
作者
Jia, Pengtao [1 ]
Liang, Shuhui [1 ]
Deng, Jun [1 ]
机构
[1] Xian Univ Sci & Technol, Sch Comp Sci, 58 Yanta Rd, Xian, Shaanxi, Peoples R China
来源
PROCEEDINGS OF 2013 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT AUTOMATION | 2013年 / 254卷
关键词
Yager triangular norm; Multiple classifiers system; Combination rule; Genetic algorithm;
D O I
10.1007/978-3-642-38524-7_74
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article focuses on the fuzzy combination rule of multiple classification system. As one of the fuzzy triangular norm operation model, Yager triangular norm can improve the generalization capability of pattern classification systems. We extend the Yager t-norm from binary form to multivariate weighted form. Based on it, we put forward a new fuzzy combination rule. The new rule is a set of continuously changing operator clusters that can make better use of the classified information of sub-classifiers. It generates different computing models by the different characteristics of datasets to combine sub-classifiers. We use genetic algorithm to evaluate the parameters of the new rule and use UCI standard datasets to test it. The experimental results show that our rule leads to less error and better performance than product rule, mean rule, median rule, and majority vote rule.
引用
收藏
页码:675 / 682
页数:8
相关论文
共 15 条
[1]  
[Anonymous], 2004, COMBINING PATTERN CL, DOI DOI 10.1002/0471660264
[2]  
Bay S. D., 1998, Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), P37
[3]   On combining classifier mass functions for text categorization [J].
Bell, DA ;
Guan, JW ;
Bi, YX .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (10) :1307-1319
[4]  
Blake C. L., 1998, Uci repository of machine learning databases
[5]  
Chitra A., 2010, INT J COMPUTER THEOR, V2, P1793
[6]  
Duba R.O., 2001, PATTERN CLASSIFICATI, V2nd
[7]  
Duin RPW, 2000, LECT NOTES COMPUT SC, V1857, P16
[8]  
Ebrahimpour R., 2009, World Acad. Sci. Eng. Technol, V57, P560, DOI [10.5281/zenodo.1069935, DOI 10.5281/ZENODO.1069935]
[9]  
Farahbod F., 2012, INT J FUZZY LOGIC SY, parXiv:1208.1955, DOI [10.5121/ijfls.2012.2303, DOI 10.5121/IJFLS.2012.2303]
[10]  
Hauke W, 1997, FUZZY SETS SYST, V101, P59