Some remarks on b-(E.A)-property in b-metric spaces

被引:8
作者
Ozturk, Vildan [1 ]
Radenovic, Stojan [2 ,3 ]
机构
[1] Artvin Coruh Univ, Fac Econ & Adm Sci, Dept Business Adm, TR-08000 Artvin, Turkey
[2] Univ Belgrade, Fac Mech Engn, Kraljice Marije 16, Belgrad 11120, Serbia
[3] State Univ Novi Pazar, Dept Math, Novi Pazar, Serbia
关键词
(E.A)-property; Common fixed point; Weakly compatible; b-Metric space; Well-posedness; FIXED-POINT THEOREMS; MAPPINGS; CONTRACTIONS;
D O I
10.1186/s40064-016-2163-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we consider, discuss, improve and generalize recent b-(E.A)-property results for mappings in b-metric spaces established by Ozturk and Turkoglu (J Nonlinear Convex Anal 16(10): 2059-2066, 2015). Thus, all our results are with much shorter proofs. One example is given to support the result.
引用
收藏
页数:10
相关论文
共 26 条
[1]   Some new common fixed point theorems under strict contractive conditions [J].
Aamri, M ;
El Moutawakil, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 270 (01) :181-188
[2]   Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces [J].
Aghajani, Asadollah ;
Abbas, Mujahid ;
Roshan, Jamal Rezaei .
MATHEMATICA SLOVACA, 2014, 64 (04) :941-960
[3]   Common fixed point theorems in Menger spaces with common property (E.A) [J].
Ali, Javid ;
Imdad, M. ;
Bahuguna, D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (12) :3152-3159
[4]  
Amini-Harandi A, 2014, FIXED POINT THEOR-RO, V15, P351
[5]  
Babu G. V. R., 2011, INT J MATH SCI COMPU, V1, P29
[6]  
Bakhtin IA., 1989, Anal. Gos. Ped. Inst. Unianowsk, V30, P26, DOI DOI 10.1039/AP9892600037
[7]  
BANACH S., 1922, Fundam. Math., V3, P133, DOI DOI 10.4064/FM-3-1-133-181
[8]   Multivalued fractals in b-metric spaces [J].
Boriceanu, Monica ;
Bota, Marius ;
Petrusel, Adrian .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (02) :367-377
[9]  
Czerwik S., 1993, Acta Math. Univ. Ostrav., V1, P5
[10]  
Ding H., 2015, Arab J. Math. Sci, V22, P151, DOI [10.1016/j.ajmsc.2015.05.003, DOI 10.1016/J.AJMSC.2015.05.003]