Improved axisymmetric lattice Boltzmann scheme

被引:115
作者
Li, Q. [1 ]
He, Y. L. [1 ]
Tang, G. H. [1 ]
Tao, W. Q. [1 ]
机构
[1] Xi An Jiao Tong Univ, Natl Key Lab Multiphase Flow Power Engn, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 05期
基金
中国国家自然科学基金;
关键词
CZOCHRALSKI CRYSTAL-GROWTH; BOUNDARY-CONDITIONS; VORTEX BREAKDOWN; NUMERICAL-SIMULATION; SWIRLING FLOW; MODEL; VELOCITY; DISPERSION; PRESSURE; EQUATION;
D O I
10.1103/PhysRevE.81.056707
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper proposes an improved lattice Boltzmann scheme for incompressible axisymmetric flows. The scheme has the following features. First, it is still within the framework of the standard lattice Boltzmann method using the single-particle density distribution function and consistent with the philosophy of the lattice Boltzmann method. Second, the source term of the scheme is simple and contains no velocity gradient terms. Owing to this feature, the scheme is easy to implement. In addition, the singularity problem at the axis can be appropriately handled without affecting an important advantage of the lattice Boltzmann method: the easy treatment of boundary conditions. The scheme is tested by simulating Hagen-Poiseuille flow, three-dimensional Womersley flow, Wheeler benchmark problem in crystal growth, and lid-driven rotational flow in cylindrical cavities. It is found that the numerical results agree well with the analytical solutions and/or the results reported in previous studies.
引用
收藏
页数:10
相关论文
共 61 条
[1]  
[Anonymous], PROG ASTRONAUT AERON
[2]   3D pulsatile flow with the lattice Boltzmann BGK method [J].
Artoli, AM ;
Hoekstra, AG ;
Sloot, PMA .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (08) :1119-1134
[3]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[4]   Lattice Boltzmann simulation of lid-driven swirling flow in confined cylindrical cavity [J].
Bhaumik, S. K. ;
Lakshmisha, K. N. .
COMPUTERS & FLUIDS, 2007, 36 (07) :1163-1173
[5]   Symmetry breaking of the flow in a cylinder driven by a rotating end wall [J].
Blackburn, HM ;
Lopez, JM .
PHYSICS OF FLUIDS, 2000, 12 (11) :2698-2701
[6]  
Chapman S., 1970, The mathematical theory of non-uniform gases
[7]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[8]   A novel coupled lattice Boltzmann model for low Mach number combustion simulation [J].
Chen, Sheng ;
Liu, Zhaohui ;
Zhang, Chao ;
He, Zhu ;
Tian, Zhiwei ;
Shi, Baochang ;
Zheng, Chuguang .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 193 (01) :266-284
[9]   Lattice Boltzmann model for incompressible axisymmetric flows [J].
Chen, Sheng ;
Toelke, Jonas ;
Geller, Sebastian ;
Krafczyk, Manfred .
PHYSICAL REVIEW E, 2008, 78 (04)
[10]   Simulation of buoyancy-driven flows in a vertical cylinder using a simple lattice Boltzmann model [J].
Chen, Sheng ;
Toelke, Jonas ;
Krafczyk, Manfred .
PHYSICAL REVIEW E, 2009, 79 (01)