Pseudo-Hermiticity and generalized PT- and CPT-symmetries

被引:189
作者
Mostafazadeh, A [1 ]
机构
[1] Koc Univ, Dept Math, TR-34450 Istanbul, Turkey
关键词
D O I
10.1063/1.1539304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study certain linear and antilinear symmetry generators and involution operators associated with pseudo-Hermitian Hamiltonians and show that the theory of pseudo-Hermitian operators provides a simple explanation for the recent results of Bender, Brody and Jones (quant-ph/0208076) on the CPT-symmetry of a class of PT-symmetric non-Hermitian Hamiltonians. We present a natural extension of these results to the class of diagonalizable pseudo-Hermitian Hamiltonians H with a discrete spectrum. In particular, we introduce generalized parity (P), time-reversal (T), and charge-conjugation (C) operators and establish the PT- and CPT-invariance of H. (C) 2003 American Institute of Physics.
引用
收藏
页码:974 / 989
页数:16
相关论文
共 11 条
[1]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[2]  
BENDER CM, COMPLEX EXTENSION QU
[3]   Pseudo-Hermiticity versus PT symmetry:: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian [J].
Mostafazadeh, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) :205-214
[4]   Hilbert space structures on the solution space of Klein-Gordon-type evolution equations [J].
Mostafazadeh, A .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (01) :155-171
[5]   Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians [J].
Mostafazadeh, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) :6343-6352
[6]   On the pseudo-hermiticity of a class of PT-symmetric Hamiltonians in one dimension [J].
Mostafazadeh, A .
MODERN PHYSICS LETTERS A, 2002, 17 (30) :1973-1977
[7]   Pseudo-Hermiticity versus PT-symmetry III:: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries [J].
Mostafazadeh, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (08) :3944-3951
[8]   Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamiltonians [J].
Mostafazadeh, A .
NUCLEAR PHYSICS B, 2002, 640 (03) :419-434
[9]   Pseudo-Hermiticity versus PT-symmetry.: II.: A complete characterization of non-Hermitian Hamiltonians with a real spectrum [J].
Mostafazadeh, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) :2814-2816
[10]  
MOSTAFAZADEH A, FACTORIZATION SYMMET