We study certain linear and antilinear symmetry generators and involution operators associated with pseudo-Hermitian Hamiltonians and show that the theory of pseudo-Hermitian operators provides a simple explanation for the recent results of Bender, Brody and Jones (quant-ph/0208076) on the CPT-symmetry of a class of PT-symmetric non-Hermitian Hamiltonians. We present a natural extension of these results to the class of diagonalizable pseudo-Hermitian Hamiltonians H with a discrete spectrum. In particular, we introduce generalized parity (P), time-reversal (T), and charge-conjugation (C) operators and establish the PT- and CPT-invariance of H. (C) 2003 American Institute of Physics.