Ultralight Silica Foams with a Hierarchical Pore Structure via a Surfactant-Free High Internal Phase Emulsion Process

被引:25
|
作者
Tu, Shuhua [1 ]
Zhao, Yongliang [2 ]
Tan, Haotian [1 ]
Yu, Heng [1 ]
Zhu, Xiaomin [3 ,4 ]
Wang, Haitao [1 ]
机构
[1] Fudan Univ, Dept Macromol Sci, Collaborat Innovat Ctr Polymers & Polymer Composi, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
[2] Shanghai Dilato Mat Co Ltd, Shanghai 200433, Peoples R China
[3] Rhein Westfal TH Aachen, DWI Leibniz Inst Interact Mat eV, D-52056 Aachen, Germany
[4] Rhein Westfal TH Aachen, Inst Tech & Macromol Chem, D-52056 Aachen, Germany
基金
中国国家自然科学基金;
关键词
MECHANICAL-PROPERTIES; MACROPOROUS POLYMERS; AEROGELS; CHEMISTRY; RECOMMENDATIONS; NANOPARTICLES; MONOLITHS; NETWORKS; SOLVENTS; AREA;
D O I
10.1021/acs.langmuir.8b02094
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An ultralight silica aerogel is among the most versatile materials available for technical applications; however, it remains a huge challenge to reduce its manufacturing cost. Here, we report on a simple approach for the preparation of silica foam monoliths with ultrahigh porosity up to 99.5% and specific surface area as high as 755 m(2) g(-1), which are similar to those of an aerogel. Our strategy is based on the effective stabilization of water-in-oil high internal phase emulsions by a hydrophobic silica precursor polymer, hyperbranched polyethoxysiloxane because of its hydrolysis-induced amphiphilicity. After conversion of this precursor polymer to silica, the emulsions are solidified without significant volume shrinkage. Thus, mechanically strong macroporous silica monoliths are obtained after removal of its liquid components. According to nitrogen sorption data, the resulting silica foams exhibit a high specific surface area and a foam skeleton consisting of both micropores (<2 nm) and mesopores (2-50 nm). The pore size, porosity, and surface area can be regulated by varying pH as well as the concentration of the silica precursor in the oil phase. In addition, the pore size can be adjusted by controlling shear force during emulsification. This work opens a new avenue for producing ultralight porous materials amenable to numerous applications.
引用
收藏
页码:10381 / 10388
页数:8
相关论文
共 42 条
  • [41] Porous multifunctional fluoropolymer composite foams prepared via humic acid modified Fe3O4 nanoparticles stabilized Pickering high internal phase emulsion using cationic fluorosurfactant as co-stabilizer
    Azhar, Umair
    Huyan, Chenxi
    Wan, Xiaozheng
    Zong, Chuanyong
    Xu, Anhou
    Liu, Jitao
    Ma, Jiachen
    Zhang, Shuxiang
    Geng, Bing
    ARABIAN JOURNAL OF CHEMISTRY, 2019, 12 (04) : 559 - 572
  • [42] Mixed phase hierarchical Ni9Se6/Cu4O4/Cu4O2/Cu4 core-shell architectures via surfactant-free approach using waste copper wicks for hybrid supercapacitors
    Arbaz, Shaik Junied
    Ramulu, Bhimanaboina
    Yu, Jae Su
    APPLIED SURFACE SCIENCE, 2023, 635