Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices

被引:27
作者
Faybusovich, L [1 ]
Gekhtman, M [1 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
integrable lattices; compatible Poisson structures;
D O I
10.1016/S0375-9601(00)00445-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a family of compatible Poisson brackets on the space of rational functions with denominator of a fixed degree and use it to derive a multi-Hamiltonian structure for a family of integrable lattice equations that includes both the standard and the relativistic Toda lattices. (C) 2000 Published by Elsevier Science B.V.
引用
收藏
页码:236 / 244
页数:9
相关论文
共 23 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[2]  
Akhiezer N. I., 1965, LECT APPROXIMATION T
[3]  
Atiyah M., 1988, GEOMETRY DYNAMICS MA
[4]  
Berezanski Yu. M., 1986, Reports on Mathematical Physics, V24, P21, DOI 10.1016/0034-4877(86)90038-8
[5]  
Berezansky Y, 1994, J NONLINEAR MATH PHY, V1, P116, DOI 10.2991/jnmp.1994.1.2.1
[6]   TODA FLOWS, INVERSE SPECTRAL TRANSFORM AND REALIZATION-THEORY [J].
BROCKETT, RW ;
FAYBUSOVICH, LE .
SYSTEMS & CONTROL LETTERS, 1991, 16 (02) :79-88
[7]   MULTIPLE HAMILTONIAN STRUCTURES FOR TODA-TYPE SYSTEMS [J].
DAMIANOU, PA .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5511-5541
[8]   MASTER SYMMETRIES AND R-MATRICES FOR THE TODA LATTICE [J].
DAMIANOU, PA .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (02) :101-112
[9]   THE TODA FLOW ON A GENERIC ORBIT IS INTEGRABLE [J].
DEIFT, P ;
LI, LC ;
NANDA, T ;
TOMEI, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :183-232
[10]  
FAYBUSOVICH L, IN PRESS J MATH PHYS