Continuum-mechanical, Anisotropic Flow model for polar ice masses, based on an anisotropic Flow Enhancement factor

被引:58
作者
Placidi, Luca [1 ,2 ]
Greve, Ralf [3 ]
Seddik, Hakime [3 ]
Faria, Sergio H. [4 ]
机构
[1] Univ Rome, Dept Struct & Geotech Engn, I-00184 Rome, Italy
[2] Fdn Tullio Levi Civita, Smart Mat & Struct Lab, I-04012 Cisterna Latina, Italy
[3] Hokkaido Univ, Inst Low Temp Sci, Kita Ku, Sapporo, Hokkaido 0600819, Japan
[4] Univ Gottingen, Dept Crystallog, GZG, D-37077 Gottingen, Germany
基金
日本学术振兴会;
关键词
Continuum mechanics; Anisotropy; Ice; Mixtures; Recrystallization; LARGE POLYCRYSTALLINE MASSES; TEXTURE EVOLUTION; LIQUID-CRYSTALS; RECRYSTALLIZATION; CREEP; SHEET; LAW; PARAMETERS; MIXTURES; CORE;
D O I
10.1007/s00161-009-0126-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
A complete theoretical presentation of the Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor (CAFFE model) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large polar ice masses in which induced anisotropy occurs. The anisotropic response of the polycrystalline ice is described by a generalization of Glen's flow law, based on a scalar anisotropic enhancement factor. The enhancement factor depends on the orientation mass density, which is closely related to the orientation distribution function and describes the distribution of grain orientations (fabric). Fabric evolution is governed by the orientation mass balance, which depends on four distinct effects, interpreted as local rigid body rotation, grain rotation, rotation recrystallization (polygonization) and grain boundary migration (migration recrystallization), respectively. It is proven that the flow law of the CAFFE model is truly anisotropic despite the collinearity between the stress deviator and stretching tensors.
引用
收藏
页码:221 / 237
页数:17
相关论文
共 55 条
[1]  
[Anonymous], 1988, BUTTERWORTHS SERIES
[2]  
[Anonymous], 1994, The Physics of Glaciers
[3]  
[Anonymous], 1984, J APPL MECH, DOI DOI 10.1115/1.3167761
[4]   FORMATION PROCESSES OF ICE FABRIC PATTERN IN ICE SHEETS [J].
AZUMA, N ;
HIGASHI, A .
ANNALS OF GLACIOLOGY, 1985, 6 :130-134
[5]   A FLOW LAW FOR ANISOTROPIC POLYCRYSTALLINE ICE UNDER UNIAXIAL COMPRESSIVE DEFORMATION [J].
AZUMA, N .
COLD REGIONS SCIENCE AND TECHNOLOGY, 1995, 23 (02) :137-147
[6]   A FLOW LAW FOR ANISOTROPIC ICE AND ITS APPLICATION TO ICE SHEETS [J].
AZUMA, N .
EARTH AND PLANETARY SCIENCE LETTERS, 1994, 128 (3-4) :601-614
[7]   One-to-one coupling of glacial climate variability in Greenland and Antarctica [J].
Barbante, C. ;
Barnola, J. -M. ;
Becagli, S. ;
Beer, J. ;
Bigler, M. ;
Boutron, C. ;
Blunier, T. ;
Castellano, E. ;
Cattani, O. ;
Chappellaz, J. ;
Dahl-Jensen, D. ;
Debret, M. ;
Delmonte, B. ;
Dick, D. ;
Falourd, S. ;
Faria, S. ;
Federer, U. ;
Fischer, H. ;
Freitag, J. ;
Frenzel, A. ;
Fritzsche, D. ;
Fundel, F. ;
Gabrielli, P. ;
Gaspari, V. ;
Gersonde, R. ;
Graf, W. ;
Grigoriev, D. ;
Hamann, I. ;
Hansson, M. ;
Hoffmann, G. ;
Hutterli, M. A. ;
Huybrechts, P. ;
Isaksson, E. ;
Johnsen, S. ;
Jouzel, J. ;
Kaczmarska, M. ;
Karlin, T. ;
Kaufmann, P. ;
Kipfstuhl, S. ;
Kohno, M. ;
Lambert, F. ;
Lambrecht, Anja ;
Lambrecht, Astrid ;
Landais, A. ;
Lawer, G. ;
Leuenberger, M. ;
Littot, G. ;
Loulergue, L. ;
Luethi, D. ;
Maggi, V. .
NATURE, 2006, 444 (7116) :195-198
[8]   MACROSCOPIC CONSTITUTIVE-EQUATIONS FOR LIQUID-CRYSTALS INDUCED BY THEIR MESOSCOPIC ORIENTATION DISTRIBUTION [J].
BLENK, S ;
EHRENTRAUT, H ;
MUSCHIK, W .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1992, 30 (09) :1127-1143
[9]  
Boehler J.P., 1987, Applications of Tensor Functions in Solid Mechanics
[10]   A REVIEW OF ICE RHEOLOGY FOR ICE-SHEET MODELING [J].
BUDD, WF ;
JACKA, TH .
COLD REGIONS SCIENCE AND TECHNOLOGY, 1989, 16 (02) :107-144