Envelopes and covers by modules of finite FP-injective and flat dimensions

被引:50
作者
Mao, Lixin
Ding, Nanqing
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Dept Basic Courses, Nanjing Inst Technol, Nanjing 210093, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
cotorsion theory; n-cotorsion module; (Pre)Cover; ( Pre) Envelope;
D O I
10.1080/00927870601115757
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring, n a fixed non-negative integer and FIn (F-n) the class of all right (left) R-modules of FP-injective (flat) dimension at most n. We prove that (FIn, FIn perpendicular to) is a perfect cotorsion theory if R is a right coherent ring with FP-id (R-R) <= n. This result was proven by Aldrich, Enochs, Jenda, and Oyonarte in Noetherian case. The modules in F-n(perpendicular to) are also studied. Some applications are given.
引用
收藏
页码:833 / 849
页数:17
相关论文
共 31 条
[1]   Covers and envelopes in Grothendieck categories: Flat covers of complexes with applications [J].
Aldrich, ST ;
Enochs, EE ;
Rozas, JRG ;
Oyonarte, L .
JOURNAL OF ALGEBRA, 2001, 243 (02) :615-630
[2]   Envelopes and covers by modules of finite injective and projective dimensions [J].
Aldrich, ST ;
Enochs, EE ;
Jenda, OMG ;
Oyonarte, L .
JOURNAL OF ALGEBRA, 2001, 242 (02) :447-459
[3]  
Angeleri Hugel L, 2006, FORUM MATH, V18, P211
[4]  
[Anonymous], 1956, HOMOLOGICAL ALGEBRA
[5]   Sigma-cotorsion rings [J].
Asensio, PAG ;
Herzog, N .
ADVANCES IN MATHEMATICS, 2005, 191 (01) :11-28
[6]   PREPROJECTIVE MODULES OVER ARTIN ALGEBRAS [J].
AUSLANDER, M ;
SMALO, SO .
JOURNAL OF ALGEBRA, 1980, 66 (01) :61-122
[7]   All modules have flat covers [J].
Bican, L ;
El Bashir, R ;
Enochs, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :385-390
[8]   P-projective modules [J].
Chen, JL .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (03) :821-831
[9]   A note on existence of envelopes and covers [J].
Chen, JL ;
Ding, NQ .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (03) :383-390
[10]   ON THE EXACTNESS OF FLAT RESOLVENTS [J].
CHEN, JL ;
DING, NQ .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (10) :4013-4021