Finite-dimensional leavitt path algebras

被引:51
作者
Abrams, G. [1 ]
Aranda Pino, G.
Siles Molina, M.
机构
[1] Univ Colorado, Dept Math, Colorado Springs, CO 80933 USA
[2] Univ Complutense Madrid, Dept Algebra, E-28040 Madrid, Spain
[3] Univ Malaga, Dept Algebra Geometria & Topol, E-29071 Malaga, Spain
关键词
D O I
10.1016/j.jpaa.2006.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify the directed graphs E for which the Leavitt path algebra L(E) is finite dimensional. In our main results we provide two distinct classes of connected graphs from which, modulo the one-dimensional ideals, all finite-dimensional Leavitt path algebras arise. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:753 / 762
页数:10
相关论文
共 7 条
  • [1] The Leavitt path algebra of a graph
    Abrams, G
    Pino, GA
    [J]. JOURNAL OF ALGEBRA, 2005, 293 (02) : 319 - 334
  • [2] Purely infinite simple Leavitt path algebras
    Abrams, Gene
    Pino, Gonzalo Aranda
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 207 (03) : 553 - 563
  • [3] ARA P, IN PRESS ALGEBR REPR
  • [4] Cuntz-Krieger algebras of directed graphs
    Kumjian, A
    Pask, D
    Raeburn, I
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1998, 184 (01) : 161 - 174
  • [5] Leavitt W., 1962, T AM MATH SOC, V42, P113, DOI [10.2307/1993743, DOI 10.1090/S0002-9947-1962-0132764-X]
  • [6] Exchange Leavitt path algebras and stable rank
    Pino, G. Aranda
    Pardo, E.
    Molina, M. Siles
    [J]. JOURNAL OF ALGEBRA, 2006, 305 (02) : 912 - 936
  • [7] RAEBUM I, 2005, CBMS REGIONAL C SERI, V103