A phase-resolved, depth-averaged non-hydrostatic numerical model for cross-shore wave propagation

被引:1
作者
Lu, Xinhua [1 ]
Zhang, Xiaofeng [1 ]
Mao, Bing [2 ]
Dong, Bingjiang [3 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
[2] Yangtze River Sci Res Inst, Wuhan 430015, Peoples R China
[3] Yangtze River Water Resource Commiss, Hydrol Bur, Wuhan 430010, Peoples R China
来源
COMPTES RENDUS MECANIQUE | 2016年 / 344卷 / 01期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Non-hydrostatic; Dispersivity; Wave breaking; Well-balanced; Shock-capturing; HLL; SHALLOW-WATER; BREAKING; RUNUP; SCHEMES; FLOW;
D O I
10.1016/j.crme.2015.09.005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, a phase-resolved and depth-averaged non-hydrostatic numerical model (SNH model) is developed. The non-incremental pressure-correction method is employed to solve the equation system in two successive steps. Firstly, an approximate Riemann solver in the framework of finite volume methods is employed to solve the hydrostatic shallow-water equations (SWE) on a collocated grid to obtain provisional solutions. Then, the intermediate solutions is updated by considering the non-hydrostatic pressure effect; a semi-staggered grid is used in this step to avoid predicting checkboard pressure field. A series of benchmark tests are used to validate the numerical model, showing that the developed model is well-balanced and describes the wetting and drying processes accurately. By employing a shock-capturing numerical scheme, the wave-breaking phenomenon is reasonably simulated without using any ad-hoc techniques. Compared with the SWE model, the wave shape can be well-preserved and the numerical predictions are much improved by using the SNH model. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 32 条
[1]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[2]  
Briggs M. J., 1995, LONG WAVE RUNUP MODE, P375
[3]   WELL-BALANCED POSITIVITY PRESERVING CENTRAL-UPWIND SCHEME ON TRIANGULAR GRIDS FOR THE SAINT-VENANT SYSTEM [J].
Bryson, Steve ;
Epshteyn, Yekaterina ;
Kurganov, Alexander ;
Petrova, Guergana .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (03) :423-446
[4]  
Fiedler FR, 2000, INT J NUMER METH FL, V32, P219, DOI 10.1002/(SICI)1097-0363(20000130)32:2<219::AID-FLD936>3.0.CO
[5]  
2-J
[6]   Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems [J].
Fraccarollo, L ;
Toro, EF .
JOURNAL OF HYDRAULIC RESEARCH, 1995, 33 (06) :843-864
[7]   Modeling Rapid Flood Propagation Over Natural Terrains Using a Well-Balanced Scheme [J].
Guerra, Maricarmen ;
Cienfuegos, Rodrigo ;
Escauriaza, Cristian ;
Marche, Fabien ;
Galaz, Jose .
JOURNAL OF HYDRAULIC ENGINEERING, 2014, 140 (07)
[8]   ON UPSTREAM DIFFERENCING AND GODUNOV-TYPE SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
LAX, PD ;
VAN LEER, B .
SIAM REVIEW, 1983, 25 (01) :35-61
[9]   Idealized numerical simulation of breaking water wave propagating over a viscous mud layer [J].
Hu, Yi ;
Guo, Xin ;
Lu, Xinhua ;
Liu, Yi ;
Dalrymple, Robert A. ;
Shen, Lian .
PHYSICS OF FLUIDS, 2012, 24 (11)
[10]   Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesq-type equations [J].
Kazole, M. ;
Delis, A. I. ;
Synolakis, C. E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 271 :281-305