A New Blind Wavelet Domain Watermark Detector using Hidden Markov Model

被引:0
|
作者
Amini, Marzieh [1 ]
Ahmad, M. Omair [1 ]
Swamy, M. N. S. [1 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada
来源
2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | 2014年
关键词
Wavelet transform; hidden Markov model; image watermarking; maximum likelihood; locally optimum detector; IMAGES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The wavelet coefficients of images show heavy-tailed marginal statistics as well as strong inter-and intrasubbands and across orientations dependencies. The vector-based hidden Markov model (HMM) has been shown to be an effective statistical model for wavelet coefficients, which is capable of capturing both the subband marginal distribution and the interscale and intra-scale dependencies of the wavelet coefficients. In this paper, we propose a locally-optimum watermark detector using the HMM model for image wavelet coefficients. The performance of the proposed detector is studied through simulation and is shown to be superior to that of other detectors in terms of the imperceptibility of the embedded watermark and detection rate.
引用
收藏
页码:2285 / 2288
页数:4
相关论文
共 50 条
  • [41] A new hidden Markov model with application to classification
    Deng, Changshou
    Zheng, Pie
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 5882 - +
  • [42] A dynamic analysis of stock markets using a hidden Markov model
    De Angelis, Luca
    Paas, Leonard J.
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (08) : 1682 - 1700
  • [43] Rainfall data simulation by hidden Markov model and discrete wavelet transformation
    A. W. Jayawardena
    P. C. Xu
    W. K. Li
    Stochastic Environmental Research and Risk Assessment, 2009, 23 : 863 - 877
  • [44] Bayesian texture segmentation based on wavelet domain hidden markov tree and the SMAP rule
    孙俊喜
    张素
    赵永明
    陈亚珠
    Journal of Harbin Institute of Technology, 2005, (01) : 86 - 90
  • [45] Power quality disturbance classification using a statistical and wavelet-based Hidden Markov Model with Dempster-Shafer algorithm
    Dehghani, H.
    Vahidi, B.
    Naghizadeh, R. A.
    Hosseinian, S. H.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 47 : 368 - 377
  • [46] Supervised ECG Delineation Using the Wavelet Transform and Hidden Markov Models
    de Lannoy, G.
    Frenay, B.
    Verleysen, M.
    Delbeke, J.
    4TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2009, 22 (1-3): : 22 - 25
  • [47] Weather Forecasting Using Hidden Markov Model
    Khiatani, Diksha
    Ghose, Udayan
    2017 INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES FOR SMART NATION (IC3TSN), 2017, : 220 - 225
  • [48] Attack Prediction using Hidden Markov Model
    Dass, Shuvalaxmi
    Datta, Prerit
    Namin, Akbar Siami
    2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 1695 - 1702
  • [49] Classification of Internal Carotid Artery Doppler Signals Using Hidden Markov Model and Wavelet Transform with Entropy
    Uguz, Harun
    Kodaz, Halife
    ADVANCES IN INFORMATION TECHNOLOGY, 2010, 114 : 183 - 191
  • [50] A Blind Watermark Decoder in Nonsubsampled Shearlet Domain Using Bivariate Weibull Distribution
    Niu P.
    Wang X.
    Yang S.
    Wen T.
    Yang H.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (07): : 1454 - 1469