A Modified Polyetherimide Film Exhibiting Greatly Suppressed Conduction for High-temperature Dielectric Energy Storage

被引:14
作者
Wu, Chao [1 ]
Alamri, Abdullah [2 ]
Deshmukh, Ajinkya A. [3 ]
Li, Zongze [1 ,4 ]
Islam, Shahidul [3 ]
Sotzing, Gregory A. [3 ,5 ]
Cao, Yang [1 ,4 ]
机构
[1] Univ Connecticut, Elect Insulat Res Ctr, Inst Mat Sci, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Mat Sci, Storrs, CT 06269 USA
[3] Univ Connecticut, Polymer Program, Storrs, CT 06269 USA
[4] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
[5] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
来源
2020 IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA (2020 IEEE CEIDP) | 2020年
关键词
DENSITY; DESIGN;
D O I
10.1109/CEIDP49254.2020.9437471
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Polymer dielectrics are key materials for capacitive energy storage in electrical and electronic systems owning to their ultra-high power density and high breakdown strength. However, the dramatically increased electrical conduction leads to poor energy storage performance under high electric fields, especially at elevated temperatures. Here we introduce structural defects into Polyetherimide (PEI) to modify the high-temperature dielectric properties. The polarization and conduction properties are investigated to reveal the effect of the structural defect. The modified PEI exhibits largely improved charge-discharge efficiency at elevated temperatures due to the suppressed electrical conduction, e.g., 91% under similar to 400 MV/m at 200 degrees C. The modification of PEI through a high-throughput facile process exhibited an enormous potential in capacitive energy storage under harsh conditions. The strategy demonstrated here unveils an unexplored space for modifying established polymers by introducing local structural defects.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 17 条
[11]   Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design [J].
Pan, Hao ;
Li, Fei ;
Liu, Yao ;
Zhang, Qinghua ;
Wang, Meng ;
Lan, Shun ;
Zheng, Yunpeng ;
Ma, Jing ;
Gu, Lin ;
Shen, Yang ;
Yu, Pu ;
Zhang, Shujun ;
Chen, Long-Qing ;
Lin, Yuan-Hua ;
Nan, Ce-Wen .
SCIENCE, 2019, 365 (6453) :578-582
[12]   High-Temperature Capacitor Polymer Films [J].
Tan, Daniel ;
Zhang, Lili ;
Chen, Qin ;
Irwin, Patricia .
JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (12) :4569-4575
[13]   A review of high-temperature electronics technology and applications [J].
Watson, Jeff ;
Castro, Gustavo .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (12) :9226-9235
[14]   Flexible Temperature-Invariant Polymer Dielectrics with Large Bandgap [J].
Wu, Chao ;
Deshmukh, Ajinkya A. ;
Li, Zongze ;
Chen, Lihua ;
Alamri, Abdullah ;
Wang, Yifei ;
Ramprasad, Rampi ;
Sotzing, Gregory A. ;
Cao, Yang .
ADVANCED MATERIALS, 2020, 32 (21)
[15]   Measurement of resistive and absorption currents in capacitor films up to breakdown [J].
Xu, Chunchuan ;
Boggs, Steven .
CONFERENCE RECORD OF THE 2006 IEEE INTERNATIONAL SYMPOSIUM ON ELECTRICAL INSULATION, 2006, :249-+
[16]   Rational Design of Soluble Polyaramid for High-Efficiency Energy Storage Dielectric Materials at Elevated Temperatures [J].
Xu, Da ;
Xu, Wenhan ;
Seery, Thomas ;
Zhang, Haibo ;
Zhou, Chenyi ;
Pang, Jinhui ;
Zhang, Yunhe ;
Jiang, Zhenhua .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2020, 305 (03)
[17]   A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature [J].
Zhang, Tian ;
Chen, Xin ;
Thakur, Yash ;
Lu, Biao ;
Zhang, Qiyan ;
Runt, J. ;
Zhang, Q. M. .
SCIENCE ADVANCES, 2020, 6 (04)