Palindromic complexity of infinite words associated with simple Parry numbers

被引:25
作者
Ambroz, Petr
Masakova, Zuzana
Pelantova, Edita
Frougny, Christiane
机构
[1] Czech Tech Univ, Doppler Inst Math Phys & Appl Math, Dept Math, FNSPE, Prague 12000 2, Czech Republic
[2] Univ Paris 07, LIAFA, UMR CNRS 7089, F-75251 Paris 05, France
关键词
beta-expansions; palindromic complexity;
D O I
10.5802/aif.2236
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A simple Parry number is a real number beta > 1 such that the Renyi expansion of 1 is finite, of the form d(beta)(1) = t(1)...t(m). We study the palindromic structure of infinite aperiodic words mu(beta) that are the fixed point of a substitution associated with a simple Parry number beta. It is shown that the word mu(beta) contains infinitely many palindromes if and only if t(1) = t(2) =...= t(m-1) >= t(m). Numbers beta satisfying this condition are the so-called confluent Pisot numbers. If t(m) = 1 then mu(beta) is an Arnoux-Rauzy word. We show that if beta is a confluent Pisot number then P(n + 1) + P(n) = C(n + 1) - C(n) + 2, where P(n) is the number of palindromes and C(n) is the number of factors of length n in mu beta. We then give a complete description of the set of palindromes, its structure and properties.
引用
收藏
页码:2131 / 2160
页数:30
相关论文
共 39 条
[1]  
Allauzen Cyril., 1998, J THEOR NOMBRES BORD, V10, P237
[2]   Palindrome complexity [J].
Allouche, JP ;
Baake, M ;
Cassaigne, J ;
Damanik, D .
THEORETICAL COMPUTER SCIENCE, 2003, 292 (01) :9-31
[3]   GEOMETRIC REPRESENTATION OF SEQUENCES OF COMPLEXITY 2N+1 [J].
ARNOUX, P ;
RAUZY, G .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02) :199-215
[4]  
BALAZI P, 2006, IN PRESS THEOR COMP
[5]  
Balazi P, 2005, INTEGERS, V5, pA14
[6]  
BALAZI P, 2005, PUBLICATIONS LACIM, V36, P113
[7]  
BALKOVA L, 2006, FACTOR PALINDROMIC C
[8]  
BERNAT J, 2005, THESIS U MEDITERANEE
[9]   Recent results on extensions of Sturmian words [J].
Berstel, J .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2002, 12 (1-2) :371-385
[10]  
BERSTEL J, 2000, INT C GEOM COMB METH