Lpsilesional motor deficits following stroke reflect hemispheric specializations for movement control

被引:207
作者
Schaefer, Sydney Y.
Haaland, Kathleen Y.
Sainburg, Robert L.
机构
[1] Penn State Univ, Dept Kinesiol, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Neurol, University Pk, PA 16802 USA
[3] Penn State Univ, Penn State Neurosci Inst, University Pk, PA 16802 USA
[4] Penn State Univ, Gerontol Ctr, University Pk, PA 16802 USA
[5] Univ New Mexico, New Mexico Vet Affairs Healthcare Syst, Res Serv, Albuquerque, NM 87131 USA
[6] Univ New Mexico, Dept Psychiat, Albuquerque, NM 87131 USA
[7] Univ New Mexico, Dept Neurol, Albuquerque, NM 87131 USA
关键词
lateralization; stroke; control; arm movements;
D O I
10.1093/brain/awm145
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Recent reports of functional impairment in the 'unaffected' limb of stroke patients have suggested that these deficits vary with the side of lesion.This not only supports the idea that the ipsilateral hemisphere contributes to arm movements, but also implies that such contributions are lateralized. We have previously suggested that the left and right hemispheres are specialized for controlling different features of movement. In reaching movements, the non-dominant arm appears better adapted for achieving accurate final positions and the dominant arm for specifying initial trajectory features, such as movement direction and peak acceleration. The purpose of this study was to determine whether different features of control could characterize ipsilesional motor deficits following stroke. Healthy control subjects and patients with either left- or right-hemisphere damage performed targeted single-joint elbow movements of different amplitudes in their ipsilateral hemispace. We predicted that left-hemisphere damage would produce deficits in specification of initial trajectory features, while right-hemisphere damage would produce deficits in final position accuracy. Consistent with our predictions, patients with left, but not right, hemisphere damage showed reduced modulation of acceleration amplitude. However, patients with right, but not left, hemisphere damage showed significantly larger errors in final position, which corresponded to reduced modulation of acceleration duration. Neither patient group differed from controls in terms of movement speed. Instead, the mechanisms by which speed was specified, through modulation of acceleration amplitude and modulation of acceleration duration, appeared to be differentially affected by left- and right-hemisphere damage. These findings support the idea that each hemisphere contributes differentially to the control of initial trajectory and final position, and that ipsilesional deficits following stroke reflect this lateralization in control.
引用
收藏
页码:2146 / 2158
页数:13
相关论文
共 75 条
[1]  
[Anonymous], WESTERN APHASIA BATT
[2]   Nondominant arm advantages in load compensation during rapid elbow joint movements [J].
Bagesteiro, LB ;
Sainburg, RL .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (03) :1503-1513
[3]   Handedness: Dominant arm advantages in control of limb dynamics [J].
Bagesteiro, LB ;
Sainburg, RL .
JOURNAL OF NEUROPHYSIOLOGY, 2002, 88 (05) :2408-2421
[4]   Cerebellar ataxia: Abnormal control of interaction torques across multiple joints [J].
Bastian, AJ ;
Martin, TA ;
Keating, JG ;
Thach, WT .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 76 (01) :492-509
[5]   Cerebellar ataxia: Torque deficiency or torque mismatch between joints? [J].
Bastian, AJ ;
Zackowski, KM ;
Thach, WT .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (05) :3019-3030
[6]   Single-joint rapid arm movements in normal subjects and in patients with motor disorders [J].
Berardelli, A ;
Hallett, M ;
Rothwell, JC ;
Agostino, R ;
Manfredi, M ;
Thompson, PD ;
Marsden, CD .
BRAIN, 1996, 119 :661-674
[7]   PREHENSION IN THE PIGEON .2. KINEMATIC ANALYSIS [J].
BERMEJO, R ;
ZEIGLER, HP .
EXPERIMENTAL BRAIN RESEARCH, 1989, 75 (03) :577-585
[8]   Constraint-induced therapy for moderate chronic upper extremity impairment after stroke [J].
Bonifer, NM ;
Anderson, KM ;
Arciniegas, DB .
BRAIN INJURY, 2005, 19 (05) :323-330
[9]   ORGANIZATION OF A SIMPLE VOLUNTARY MOVEMENT AS ANALYZED FROM ITS KINEMATIC PROPERTIES [J].
BOUISSET, S ;
LESTIENNE, F .
BRAIN RESEARCH, 1974, 71 (2-3) :451-457
[10]   INITIAL AGONIST BURST IS MODIFIED BY PERTURBATIONS PRECEDING MOVEMENT [J].
BROWN, SH ;
COOKE, JD .
BRAIN RESEARCH, 1986, 377 (02) :311-322